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1 EXECUTIVE SUMMARY 
When authoring large scale crowd animations for feature films, the use of simulation techniques to               
produce ​realistic results has been an industry standard in visual effects (VFX) for the past two                
decades. However, whilst being an incredibly powerful methodology, there are drawbacks. Primarily,            
artists aren’t able to make minor edits without having to re-simulate the entire scene, as each frame                 
of the simulation is deterministic and dependant on the previous one. As such, the turnaround of                
shots can be extremely time consuming as full simulations can take minutes, if not hours, to complete                 
depending on the complexity. 

The goal of this work is to speed up the turnaround of crowd shots at DNEG by allowing crowd artists                    
to be able to reuse, edit and repurpose animations used as inputs to the crowd system. The                 
deliverable aims to describe the tooling developed and the desired results of: 

● Providing tooling so that allows artists to alter the trajectories of characters in a scene in an                 
artist directable​ manner. 

● Allows artists to reuse and repurpose animation so as to reduce the requirement of bespoke               
animations having to be created. 

● Speed up turnaround of shots by creating automated tooling that addresses common            
use-cases, in particular; collision avoidance. 

By altering the approach from an evaluation of agent states on each frame, to evaluating the whole                 
animation of characters within the scene, this deliverable demonstrates the potential of an art driven               
and simulation free workflow for crowd creation. 

We demonstrate a range of path editing tools and evaluate the usability of each within the context of                  
high fidelity digital crowd creation. We also demonstrate an approach to collision avoidance based on               
this tooling, as well as an animation layering framework. 

Whilst a full evaluation of how the tools perform in a production environment has not yet been carried                  
out, we conclude that the tooling shows a lot of promise and that they will be beneficial to our artists.                    
We also provide the groundwork for extension into motion synthesis techniques which will be              
described in deliverable D5.5. 

 

2 BACKGROUND 
Work package 5 focuses on asset transformation, and this document describes the work done in               
relation to WP5T2. It also acts as a companion piece for some of the work outlined in WP5T3 which is                    
described in deliverable D5.5. In that deliverable, parts of the trajectory editing toolkit is used as an                 
input to the animation synthesis techniques. 

The three tools that were specified to be included in this delivery document were as follows: 

● “A tool that allows to alter character’s path, based on user input or environment description.” 
● “A tool that allows to change style of an animation, or to match style of two animations to                  

allow them to be seamlessly combined.” 
● “A tool that allows to solve for collisions by applying minimal adjustments to animations              

already placed in the scene.” 

The work done to alter a character’s path can be seen more as a framework that can be extended or                    
augmented to solve both the first and third bullet points in that list. The tool described in the second                   
bullet point was adapted slightly, with the approval of the consortium, to focus more on animation                
layering. This change was made for a number of reasons, though primarily because the tooling was                
both more beneficial to the company, and more fully addressed the goal of asset re-use which is a                  
key aim of the SAUCE project. 
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3 INTRODUCTION 
To address the requirements described in WP5T2, this deliverable focuses on tooling to edit mo-cap               
data in an artist friendly manner. The tooling presented allows artists to make minor edits to a                 
character’s path, layer together multiple animations onto a single character to produce new             
performance data, and generate edits to the path of characters to remove collisions. 

Chapter 4 focuses on the background of path manipulation, describing desired characteristics of such              
tooling. 

Chapter 5 discusses different implementations, how they address the desired characteristics and what             
limitations they possess. 

Chapter 6 outlines extensions to trajectory editing to handle collision avoidance. 

Chapter 7 describes the work done for the animation layering toolkit, which allows artists to apply                
sections of animation from multiple clips to produce new performances. 

Chapters 8, 9 & 10 cover conclusions, references and web references.  

 

3.1 Main objectives and goals 

The objectives of this work package are simple:  
● To improve the quality of crowd shots at DNEG by speeding up the iteration cycle of artists. 
● To allow artists to re-use previously made assets in a new context. 
● To provide tooling that automates tasks that occur frequently. 

 
All of these objectives serve to make the production of crowd shots more efficient and therefore less                 
expensive. 
 

3.2 Methodology 

As there are a few tools associated with this deliverable, and in particular the trajectory editing toolkit                 
covers a few different implementations, the methodology for each task is quite varied. That said, a                
similar strategy was adopted where practical, namely the development of a C++ backend and a DCC                
specific front-end. Implementing the toolsets in this way ensures that we not only have a large                
degree of control when it came to optimisations, but also allows us to be DCC agnostic in terms of the                    
core functionality. This is important when developing tooling for VFX as studios are not fully in control                 
of the direction of development for third party software. Whilst we maintain communication channels              
with the producers of the third party software used at the studio, priorities can change, so we need to                   
be as flexible as possible to those changes.  

For the purposes of this project, testing of initial concepts was done using a simple standalone in                 
house OpenGL viewer. For artist interaction, the user interfaces for tooling was developed in SideFx               
Houdini™ as this is currently the software used at DNEG for crowd creation. More detail about the                 
integration will be described in deliverable D5.5. 

 

3.3 Terminology 

Agent: ​A single animated character in a crowd system. 

Character: ​Used interchangeably with ​Agent​. 

Constraint: ​A condition of a solve that determines that output animation. 

OpenGL:​ An industry standard open source graphics drawing library. 

Laplacian Solver: ​A system that ingests input animations and constraints and produces new or              
altered animations that satisfy those constraints. 
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LU Solver: Solver for sparse matrix of linear equations taking the form Ax = b by way of LU                   
decomposition [5]. 

QR Solver: As with the sparse LU solver, solves a system of linear equations but using QR                 
decomposition [5]. 

 

3.4 Relation to the Self-Assessment Plan (D1.2)  

As described in the self-assessment plan, over the course of the development of the tooling, we have                 
continuously been doing benchmark testing and in-house user testing. Moving forward from this             
deliverable, user evaluation in experimental production and pipeline evaluation between months           
M25-36 will be carried out, and described as part of work package 8 in deliverable D8.3. 

 

4 Requirements of path editing tools 
It would perhaps seem reasonable to assume that path editing tools might have the same set of                 
requirements as curve editing tools since the trajectory of a character can be simply represented as a                 
curve. However, there are a number of restrictions that must be satisfied when dealing with               
animations as we need to ensure that the characteristics of the original animation are maintained.  

The goal of the path editing tools are to allow artists to quickly edit the trajectory of locomoting                  
characters in an intuitive manner and art-directable. This chapter covers some of the requirements              
when designing path editing tools. 

 

4.1 Speed of interaction 

As one of the primary goals of this work is to ensure that the turnaround of shots is sped up, speed                     
of interaction is a lynchpin for any path editing tooling. For simple path editing of a single character,                  
anything short of a fully interactive response to path edits will dramatically impact the artists user                
experience with the tool. 

 

4.2 Animation driven positioning 

Simply editing the trajectory of character animation by moving keyframes in space would have              
unintended side effects on the motion. If, for example, the trajectory was extended with no additional                
processing, then the distance travelled by the agent would increase whilst the animation speed would               
remain constant. This would introduce foot sliding which would make the animation appear unnatural. 

Figure 4.1 illustrates how this animation stretching would result in accelerated movement over the              
same timeframe where the dots depict keyframes of the animation. 

 

Figure 4.1: Animation stretching leading to foot-sliding 
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It is therefore important to apply some form of resampling to ensure that this footsliding is                
minimised. 

It should be noted however, that without some mechanism for procedurally adapting the character’s              
motion based on the trajectory using, for example, a motion graph implementation, there will always               
be some degree of foot sliding introduced by altering an agent’s path. This is especially true when                 
introducing turns, as the bipedal motion for walking round a corner is quite different to that of the                  
motion when walking forward. 

That said, any trajectory editing tool that simply remaps animation should at least preserve the               
distance travelled. 

 

4.3 Positive and negative constraints 

Whilst there are many use cases where an artist may wish to specify that a character is at a certain                    
location at a specified time, there are also cases where they may which to specify that a character                  
avoids a specific location. For the purposes of this document, we will refer to these use cases as                  
positive and negative constraints respectively. 

 

4.3.1 Positive constraints 

Figure 4.2 below illustrates how the placement of positive spatio-temporal constraint might look. The              
blue crosses denote positive constraints placed in space, associated with a given frame. From this, a                
trajectory can be formed. 

 

 

Figure 4.2: Path following using positive constrates 

 

The properties of the trajectory, and how the constraints should connected, is not covered here, but                
will be detailed further in section 4.5. 

 

4.3.2 Negative constraints 

Negative constraints might be used when there are certain areas that agents need to avoid. One                
example would be if there were obstacles in a scene and an artist wanted to specify that no agent’s                   
trajectory should pass through a certain area. Another example is that of collision avoidance with               
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other characters in the scene, where we might want to iteratively push agents away from each other                 
when a collision has occurred. 

Figure 4.3 below illustrates how negative constraints could be used to act as an area of avoidance. 

 

Figure 4.3: Path following using negative constraints 

 

4.4 Multi-character constraints 

When dealing with the interaction between multiple characters, it is often useful to be able to specify                 
constraints that affect more than one agent. This is useful in situations where characters need to                
interact with each other. If, for example, an artist had animations of two characters walking towards                
each other and then fighting, they would need to to be able to specify a distance and frame time as                    
any interaction like this is both spatially and temporally linked. 

For a tool that allows this kind of linking of animation to occur, the resulting animation would need to                   
be robust to other edits that might occur later. Without this robustness, each edit could affect                
previously defined interactions, and editing would become incredibly laborious. 

 

4.5 Shape preservation with second order derivative smoothing 

If a constraint is applied to an animation in such a way that it moves the position of the agent at a                      
given time, it is necessary to ensure that the effects of that constraint are distributed as evenly as                  
possible over the course of the animation. The figure below demonstrates how a constraint applied to                
a section of animation at time Pi would deform the animation trajectory if no smoothing were to be                  
applied. 
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Figure 4.4: Animation constraint with no shape preservation 

 

To ameliorate this kind of discontinuity, it would be desirable to have some kind of second order                 
smoothing algorithm to spread the effect of such a perturbation over the duration of the animation                
clip, or at least between any other constraints. The results of such a smoothing function are shown                 
below. 

 

Figure 4.5: Animation constraint with shape preservation applied 

 

In this example, the first and last points of the animation are constrained in place, and the point Pi is                    
constrained and moved. The remaining points are also transformed in order to preserve the shape of                
the path, attempting to minimize changes in trajectory and the distances between each point. By               
ensuring that this deformation is as smooth as possible, it is possible to minimize obvious foot sliding                 
and abrupt rotation in the resulting animation. 

This simple transformation above can be achieved with a curve-editing tool, but for any more detailed                
shapes, this would require many manual edits and rely on the user to preserve the shape by eye. 
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5 Implementations of path editing 
In this chapter, we describe some of the path editing tooling that has been developed to solve some                  
of the requirements laid out in chapter 4. 
 

5.1 Spline manipulation 

In our first implementation, we attempted to make a simple spline manipulation tool that remaps the                
trajectory of the character by translating its root joint based on a control spline, whilst maintaining                
the distance travelled by the character so as to minimise any foot sliding artifacts introduced by                
stretching the animation. 

The viewport controlled spline editing workflow offers a standard spline editing toolkit with controls in               
the viewport. This allows an artist to edit the trajectory in real-time using the agent’s full animation                 
trajectory curve. One downside of this technique, as described in section 4.2, is that it can introduce                 
some foot sliding when a character turns abruptly. This becomes particularly obvious for animations              
where the character is walking in a straight line but the input curve contains a sharp turn. This is a                    
factor that artists must consider, but for quick edits, especially when the character is far from the                 
camera, this simple toolkit can dramatically improve the turnaround time of certain shots. 

Figure 5.1 shows this tool implemented in SideFX Houdini™ with the trajectory of a number of agents                 
being altered using the white spline controls. Each of these animations have been altered from a                
single straight walk animation. 

 

Figure 5.1: Path editing using spline manipulation 

 

5.2 Implementing shape preservation algorithms 

Whilst the spline manipulation tool was powerful, it is very easy to introduce sharp turns and                
therefore, obvious foot sliding. To address this, we decided to investigate algorithms that better              
handle the foot sliding by preserving the shape of the trajectory. We prototyped a couple of solutions,                 
one iterative solver, and one laplacian solver and evaluated them in the context of trajectory editing. 
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5.2.1 Local Features 

In order to preserve the shape and scale of a deformed path we form error functions that minimize                  
changes in the local features of the path. The 2D path formed by the motion path can be represented                   
as a triangular mesh where each position forms a triangle with its immediate neighbour, as depicted                
in figure 5.2. 

 

 

 
Figure 5.2: Shape preservation using triangulation error metric 

 

Any point ​P​i​ on the path may be represented with as its local coordinates, x and y, within its triangle. 

  [1] P  x(P  P )  yR (P  P )P i =  i−1 +  i+1 −  i−1 +  90 i+1 −  i−1   

 

where R​90​ is a rotation matrix   

 

 

Figure 5.3: Local co-ordinates for the constructed mesh 

 

The desired solution for the deformation would move any points to their constrained positions while               
introducing no change in the local x and y coordinates. However, for any deformation that involves                
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scaling the mesh it is very unlikely there will be a solution that achieves this, so we find an                   
approximate least squares solution, which attempts to minimize changes in the local features while              
satisfying constraints ​— 

  ​ [1] (P ) || p   ||  w | p  c  || E =  ∑
 

0−>n
 i

rest − pideformed
 2

  +  ∑
 

iεC
| i

deformed −  i
2  

 

where ​P​ is the path, ​n​ is the number of points, ​c​ are constraints and ​w​ is the constraint weight. 

 

5.2.2 Iterative Error Minimization 

Our first attempt at a mechanism for solving this was to implement an iterative deformer. For each                 
iteration, every point on the path accumulates one error for its local position compared to its rest local                  
position, and another error for any constraints applied to that point. The point is then moved to                 
minimize that error. After enough iterations, the path is smoothly transformed to satisfy the              
constraints. 

Below we show how errors are calculated and applied through the initial iterations of a solve. An error                  
for a position is represented as a translation vector which is the amount the position should be moved                  
to minimize the error. A position has separate errors to its left and right neighbours, as well as errors                   
from its neighbours to itself. 

 

P​3​ has an error to a position constraint so is moved by that error vector. 

 

 

After P​3 is moved, its neighbouring points now have error for their positions local to their neighbours.                 
Taking P​2 as an example, the red arrows shows the error of its local position in the coordinate system                   
P​1​->P​3​. The green arrow shows the error applied to P​2​ from P​3​. 
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The errors for any point are summed and then averaged for the number of neighbours which have an                  
influence on the point. In the case of P​2 we divide the summed error by 4, as we are minimizing error                     
to and from its adjacent neighbours. 

 

 

 

A method for reducing the number of iterations required is to consider error beyond just the adjacent                 
neighbours. This requires applying a weight average of error. The weight of the error can be                
calculated from the proximity of a point to its neighbour. 

This solver had the advantage of being easier to understand than other methods and quick to                
implement as a prototype, but was ultimately too slow for interactive editing.  

 

5.2.3 Laplacian Shape Editing 

In an attempt to speed up the solve, another solution was explored. As-Rigid-As-Possible 2D mesh               
editing [1] makes use of the Laplacian coordinates of a mesh to form two least-squares solutions of                 
linear equations that can be solved very efficiently. 

Instead of directly editing the vertices of the mesh, the differential coordinates of the vertices can be                 
used, with the constraints providing the ​known​ vertices on the mesh [3]. 

The goal of each edit is to translate and rotate local coordinates to preserve the shape/trajectory of                 
the path, as shown in the shape preserving least-squares solution, and also to scale to reduce the                 
amount of squash and stretch. 

Unfortunately, it is not possible to form a single error function that will both preserve the translation                 
and rotation, as well as the scale [1]. With As-Rigid-As-Possible editing, the problem is split into two                 
least squares solutions for shape and scale preservation. The result of the shape preserving step can                
then be passed to the scale preserving step. 

Step 1: Shape Preservation 

  ​[1] (P ) || p   ||  E =  ∑
 

0−>n
 i

rest − pideformed
 2

   

Step 2: Scale Preservation 

Using the deformed positions from step 1, for any point ​p​i​deformed the normalised vector to the next                 
point ​p​i+1​

deformed is found and scaled by the length of the respective rest vector to form ​v​i​deformed​. The                  
purpose of this was to minimize any change in these vectors so the following least squares error                 
function could be formed ​— 

  ​[4] (P ) || (v  v )  v ) ||  E =  ∑
 

0−>n
 i

rest −  i−1
rest − (vi

deformed −  i−1
deformed  2
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Breaking these error functions down into their partial derivatives allows for the formation of a system                
of linear equations that was efficiently solved using a sparse matrix LU solver [5]. 

By using the Laplacian shape editing solver, the speed of interaction was dramatically improved over               
the iterative solver, meaning that individual edits could be made in real time. This addresses the initial                 
requirement in section 4.1 stating that the editing would need to be interactive for any trajectory                
editing tools to be usable. 

 

5.3 Group motion editing 

Building on top of the laplacian shape editing mechanism described in section 5.2, we wanted to give                 
users more control when editing crowd scenes involving a large group of characters moving together.               
This situation arises often when producing shots, with examples including scenes where soldiers are              
in formation, or pedestrians are constrained to walking on a footpath in close proximity to one                
another. Manually editing the trajectory of individual agents can be tedious, especially when there are               
any more than just a few agents to deal with.  

Group motion editing [2] allows users to edit all the paths of a group at the same time, maintaining                   
the spacing between characters while preserving the local features of their paths which reduces foot               
sliding and large rotations. 

 

5.3.1 User Interaction 

After laying out a group of characters each with animation, a user can click and drag from any point                   
on the path of a character and move it, creating a position constraint for that point. This will                  
simultaneously edit each path of all characters, making it very quick to edit to follow more complex                 
trajectories. An example of a number of characters being edited as a group is shown in figure 5.4 

 

 

Figure 5.4: Path editing with formation preservation using group motion editing 

 

Here the group of 14 agents were all walking in a straight line, but a single rotational edit changes all                    
of their trajectories whilst maintaining their proximity to one another. 

 

5.3.2 Implementation 

To achieve these results, we use the Laplacian solver described in section 5.2 with a small extension.                 
This solver forms an error function that attempts to minimize changes in the local coordinates of each                 
point on a path while adhering to positional constraints set by the user. While the deformation                
described in the previous section was applied on a mesh created from the motion path of an                 
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animation, group motion editing connects the individual path meshes of each character, adding edges              
between neighbouring points and applying deformation to the entire mesh at once. 

 

Figure 5.5: Mesh construction for As-Rigid-As-Possible deformation for group motion editing 

 

5.3.3 Further Work 

Although the shape deformation solver attempts to preserve the spacing between, the minimization of              
error over the entire mesh can still lead to overlapping trajectories, in which case, manual edits or                 
some form of collision avoidance algorithm would need to be applied. As part of this work packet, we                  
have implemented an iterative collision avoidance algorithm which will be detailed in chapter 6. 

Any deformation of a motion path may stretch or squash the distance between points, resulting in                
foot sliding and unrealistic speed of movement. This is partially addressed in Group Motion Editing [2]                
by time warping deformed animations to match their original speeds, although the foot sliding will still                
be present. Instead, the group motion editing could be integrated with the motion graph              
implementation developed for deliverable D5.5 which, based on the desired position constraints,            
creates new animation data that may have more or fewer frames of animation depending on any                
edits made. However, this is future work and not in the scope of this deliverable. 

 

5.4 Constraint based path editing tool 

The group motion editing implementation represents a powerful step forward towards a simulation             
free crowd editing toolkit. That said, it doesn’t provide us with all the tools required to move away                  
from simulation completely. This is because it is designed mostly as a deformation framework that               
happens to use crowd characters as its “mesh”. 

For this reason, we have developed another tool that allows artists to define constraints, and solve for                 
appropriate animation. Part of the reason for this is that we want to be able to define character                  
interaction. This will be covered in more detail in section 5.4.2.2 with our introduction to relative                
position constraints. 

For simple trajectory editing however, we can introduce spatio-temporal constraints that specify that             
an agent must be at a particular point in space at a given time. The deformation must satisfy the                   
constraint of following the path but also minimize the amount of deformation of the original captured                
data in order to maintain a realistic performance.  
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Our editing tool provides the user with the means to easily make large edits, while preserving the                 
details of the source data at interactive, real time performance. 

 

5.4.1 Animation Processing 

The spatial animation data being edited is the trajectory/path the character will follow. To have a                
starting point for deformation, this trajectory must first be extracted from the animation. This is done                
by simply using the position of the root joint at each frame. For animations without a root joint, this                   
joint is added by projecting onto the ground directly below the hip joint. The rotation of the joint is                   
calculated from the tangent of the path, i.e, the normalized vector between the previous frame’s root                
position, and the next frame [4]. 

For stationary animations where the tangent of the path may have any arbitrary direction, the               
rotation is set as a constant. Stationary sections of animation are described by the user using a                 
tagging system in which a given frame range is tagged as “Stationary”. This tag is also used later                  
during shape deformation as a hard constraint to maintain the shape of stationary animation, as even                
slight deformation is very obvious and damaging to fidelity. 

Methods exist to automatically detect stationary animation but to handle a large number of              
animations accurately is beyond the scope of this project. Although requiring manual user input, a               
tagging system is a robust and re-usable solution. 

 

5.4.2 Constraints 

Constraints act as a user-interface for editing animation data. We provide constraints for editing the               
motion path, time-mapping and interaction between characters [4]. Each constraint is placed upon             
frames of animation, and where appropriate may have a duration of frames to which they are                
applied. 
 

5.4.2.1 World Position 

At frame f, places the root position of the animation at position p. Used as a handle for editing the                    
motion path of an animation. 

 
Figure 5.6: Example of editing World Position Constraints.  
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5.4.2.2 Relative Position 

A relative position constraint constrains the root position of animation A at frame f1, to the root                 
position of animation B at frame f2. The direction and distance between the frames is set with a                  
user-defined constant vector. This may be used for character interaction e.g. two characters meeting,              
walking alongside each other or fighting. The constraint is easily set and maintained regardless of               
changes in other constraints. 

 

 
Figure 5.7: The relative constraint from A to B is maintained while Anim B is edited. 

 

5.4.2.3 World Time 

This constrains frame f to occur at time t, smoothly time warping the animation. 
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Figure 5.8: Root positions drawn at constant time intervals demonstrate the smooth time warping. 

 

5.4.2.4 Synchronised Time 

Similar to the Relative Position constraint, constrains the time of frame f1 of anim A to frame f2 of                   
anim B, with a constant time difference of t. Can be used in various situations of character                 
interactions, shaking hands, clashing swords, or reacting to an in-scene event can all be precisely               
timed and resolved regardless of edits to the timing of the animations prior to the constraint. 

 

5.4.2.5 Stationary Animations 

Any deformation of a stationary section of an animation will result in very obvious sliding or rotation.                 
Therefore, for any frames that have the user-defined “Stationary” tag, we add the shape preserving               
function as hard constraints across both steps, which will prevent any deformation. 

 

 
Figure 5.9 Locomoting animation with a stationary section in the middle. 

 

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 20 of 27 
 



 

 
Figure 5.10: World position constraints are edited but no deformation occurs at the stationary section of the animation 

 

5.4.2.6 Laplacian Time Warping 

Time mapping data describes what time each frame of an animation occurs at which can be warped                 
to meet the timing requirements the user has set using constraints.  

The undeformed animations have a constant time interval between frames. In order to smoothly time               
warp an animation we form an error function that will try to minimize changes in the interval between                  
frames. Unlike the spatial deformation, we only need to form a single error function [4], which in our                  
system is the same as the scale preserving function of the spatial deformation ​— 

 

 (T ) || (interval  interval )  interval ) ||  E =  ∑
 

0−>n
 i

rest −  i−1
rest − (intervali

deformed −  i−1
deformed  2

   

 

where ​T is the time map data of the animation, and interval is the difference between the time at                   
frame ​i​ and ​i+1​. 

 

5.4.3 Linear System Solver 

Systems of linear equations can be represented as matrices, for example ​—  

x b y c  0a1 +  1 +  1 =   

x b y c  0a2 
+  2 +  2 =   

a, b and c are known constants, and we are solving to find x and y. This can be translated into matrix                      
form as follows ​— 

  

In order to solve the least squares problems we need to put the data into a form that can be solved                     
by a LU solver ​— 
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x bA =   

 

where ​A is a sparse matrix of r rows and c columns. It stores the partial derivatives of our least                    
squares solutions. 

𝑥 is a vector with r elements of unknown values which is what we are solving for. The result of ​𝑥 will                      
store the positions the deformed animation paths, or the time values for the animation time maps. 

b is a vector of known values, i.e constraints and desired differences between partial derivatives of                
the points/times. 

We use the Eigen library [5] which provides a number of solvers for sparse linear systems, of which                  
we found the umfpack [6] LU solver to be the fastest of those tested. One issue that could arise with                    
a LU solver was in cases where matrix ​A was a singular (non-invertible) matrix. A sparse LU solver                  
requires a matrix that can be inverted, so in cases where it is not we fall back to using one of the                      
more stable but slower options such as a sparse QR solver [5]. 

 

6 Collision avoidance via path editing 
The constraint based path editing tool described in section 5.4 provides a framework on top of which                 
a collision avoidance scheme can be built. This chapter details some of the approaches explored. 

All of these approaches involve changing the trajectory of an agent when a collision is detected,                
pushing the agents away from the point of collision. Any change in trajectory however may push an                 
agent into the path of another agent, causing a new collision. We therefore iteratively apply these                
adjustments ​— checking for collisions, pushing trajectories and repeating until no more collisions have              
been found or a maximum number of iterations has been reached [2]. 

Collisions are found by sampling the positions of agents at constant time intervals, and for each pair                 
of agents find the maximal point of overlap between the collider capsules placed on the agent. For                 
each maximal collision we then use the Laplacian path editing tool detailed in section 5.2 to move the                  
colliding points of the two trajectories apart in the direction of the vector between the two points. We                  
do this by creating a positional constraint between the points and solving for the paths of the agents,                  
subject to the user-defined constraints. The formation of these collision constraints underwent a few              
iterations before finding a robust solution. 
 

6.1 Relative Position Constraint 

We initially used Relative Position constraints, seen in section 5.4.2.2, which enforce a world direction               
and distance between two points. However, this only yielded reasonable results in very simple              
scenarios. Constraining the world direction between two points could lead to unnatural trajectories             
with a large amount of squash or stretch, particularly as the constraints accumulate with each               
iteration and therefore may conflict with one another. 

 

6.2 Mesh-based Constraints 

The next iteration represented the collision constraints as an edge in the colliding path meshes,               
maintaining the distance between collision points in the same way local features of the path are                
handled. Representing the constraint using local coordinates generally gave smoother results, and            
could handle straight-forward scenarios. 

Figure 6.1 demonstrates the result of such a collision avoidance scheme. 
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Figure 6.1 Shape and scale preserving constraints are added between colliding points. 

However, as with the relative position constraints, situations that required more iterations to solve,              
i.e, densely populated areas of agents with numerous collisions, led to an accumulation of conflicting               
constraints which resulted in a nest of colliding paths that didn’t converge on a solution. 

 

6.3 Solution  

The previous attempts both involved adding new constraints to the original source animation each              
iteration and resolving, which led to over-constrained paths bunching together. The solution we found              
to this problem was to use the resulting animations of the previous iteration as new source animation                 
of the solve. We then only apply the mesh-based constraints of the previous sub-chapter for the                
maximal collisions at each iteration. 
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F​igure 6.2 A densely positioned set of agents resolve their collisions after 10 iterations. 

One downside of this approach is that we may accumulate additional error in the paths with each                 
iteration, leading to some foot sliding. As we are using an already deformed animation as the source                 
of a new solve, we no longer maintain the shape preserving local features of the original animation,                 
and with each iteration may introduce more and more deformation. However, as most collisions can               
be resolved in a low number of iterations the error is generally acceptable. 

This solution also is also computationally slower than previous attempts, as we need to fill sparse                
matrices with new data rather than using the existing data of the original animation. As such, we                 
conclude that collision avoidance should be applied as a post-processing function rather than during              
user-editing. 

 

7 Animation layering toolkit 
Animation layering involves overlaying the poses of one animation, which we will call the layer 
animation, over the poses of a source animation. Layering can be applied at run-time, reducing the 
need for an animator to produce new assets, and giving artists flexibility to re-use existing 
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animations. This allows them to create a wide variety of new animations that fulfill the requirements 
of their shot. 

A common use of layering is to apply a different upper-body animation on top of a source locomotion 
animation (walking, running, etc.). A scene involving a street of walking pedestrian could re-use 
stationary animations of characters using their phones, fidgeting, gesticulating etc., and apply these 
on top of their walk animations to introduce more variety and life. The layered animations are very 
quick and simple to edit and add no per-character memory cost. 

 

 
Figure 7.1: Gesticulating layered animation applied to walking source animation. 

 
 

7.1 Layering Techniques 

To layer an animation we first specify a joint of the source animation skeleton. The layering is applied                  
to that joint and every child joint throughout the skeleton. To apply upper body animation we may                 
select a hip, or lower spine joint, which will layer the upper body animation from the spine to the                   
fingers of each arm and the head.  

A weight is also specified, which can change how much of the layer animation to apply on top of the                    
source animation. This can be used to alter the look of the animation and potentially add                
randomisation or variety if multiple characters are using the same animations. 

We have implemented two methods for layering, blending and additive. 

 

7.1.1 Blending 

For each pose in the source animation, we linearly interpolate the local joint transforms from the                
source transforms to the layer transforms. With a weight of 1.0, the resulting animation will use                
100% of the local joint transforms of the layer animation, and 0.0% of the source transforms. 
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7.1.2 Additive 

For the majority of situations additive layering produces higher quality animations than blending.             
Instead of linearly interpolating, the layer animation is added on top of the source animation,               
preserving both animations [7]. 

For example, we may apply a stationary layer animation of a character talking on their phone to a                  
walking source animation. When blending, this can produce a stiff output animation where the whole               
upper body swing with the movement of the walking hips, while the spine and shoulders lose the                 
sway that comes with a walk. As additive layering applies the layer local transforms on top of the                  
source, we have the animation talking on the phone while preserving the walking movement which               
produces a better quality output.  

 

 
Figure 7.2: Seated and on the phone layered animation applied to walking source animation. 

 

8 Conclusion 
Over the course of the time spent on the work package, significant progress has been made in                 
developing new workflows for our artists that don’t require simulation. 

The tools set out in this document are designed to improve the quality and speed of turnaround of                  
crowd shots at DNEG. Some of the tooling described, specifically the animation layering toolkit, has               
been deployed to artists and is already allowing artists to re-use sections of animation instead of                
requiring new animation to be created. The full extent to which this tooling will speed up the                 
turnaround of shots is still yet to be determined, and will require further investigation. 

When evaluating the path editing tooling, whilst the developer testing of workflows appears to              
address a lot of the user requirements, it is unclear to what extent the new features will improve the                   
workflows of artists until they are tested in a production environment. 

Integration work with asset synthesis techniques has been employed and is discussed in further detail               
in deliverable D5.5. 
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