

D5.4 Tools for editing mo-cap data

Grant Agreement nr 780470
Project acronym SAUCE

Project start date (duration) January 1st 2018 (36 months)
Document due: December 31st 2019

Actual delivery date December 20th 2019
Leader DNEG

Reply to Mungo Pay - mungo@dneg.com
Document status Submission Version

Project funded by H2020 from the European Commission

Project ref. no. 780470

Project acronym SAUCE

Project full title S​mart ​A​sset re-​U​se in ​C​reative ​E​nvironments

Document name D5.4 Tools for editing mo-cap data

Security (distribution level) Public

Contractual date of delivery December 31st 2019

Actual date of delivery December 20th 2019

Deliverable name Tools for editing mo-cap data

Type Demonstration

Status & version Submission Version

Number of pages 27

WP / Task responsible DNEG

Other contributors -

Author(s) Mungo Pay - DNEG

EC Project Officer Ms. Adelina Cornelia DINU,
Adelina-Cornelia.DINU@ec.europa.eu

Abstract The use of simulation as a tool to create crowd sequences
has been an industry standard for the past two decades,
however, there are limitations to this approach when applied
to the fast paced nature of a VFX production schedule. This
report contains information about the approaches taken to
increase reusability of animation assets so as to increase the
quality of crowd production shots whilsts reducing the
amount of artist time to do so.

Keywords Animation, mo-cap, trajectory editing, constraint, Laplacian

Sent to peer reviewer Yes

Peer review completed Yes

Circulated to partners No

Read by partners No

Mgt. Board approval No

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 2 of 27

mailto:Adelina-Cornelia.DINU@ec.europa.eu

Document History

Version and date Reason for Change

1.0 09-10-19 Document created by Dr Mungo Pay

1.1 02-12-19 Version for internal review

1.2 05-12-19 Final version for submission

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 3 of 27

Table of Contents

EXECUTIVE SUMMARY 6

BACKGROUND 6

INTRODUCTION 7
Main objectives and goals 7
Methodology 7
Terminology 7
Relation to the Self-Assessment Plan (D1.2) 8

Requirements of path editing tools 8
Speed of interaction 8
Animation driven positioning 8
Positive and negative constraints 9

Positive constraints 9
Negative constraints 9

Multi-character constraints 10
Shape preservation with second order derivative smoothing 10

Implementations of path editing 12
Spline manipulation 12
Implementing shape preservation algorithms 12

Local Features 13
Iterative Error Minimization 14
Laplacian Shape Editing 15

Group motion editing 16
User Interaction 16
Implementation 16
Further Work 17

Constraint based path editing tool 17
Animation Processing 18
Constraints 18

World Position 18
Relative Position 19
World Time 19
Synchronised Time 20
Stationary Animations 20
Laplacian Time Warping 21

Linear System Solver 21

Collision avoidance via path editing 22
Relative Position Constraint 22

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 4 of 27

Mesh-based Constraints 22
Solution 23

Animation layering toolkit 24
Layering Techniques 25

Blending 25
Additive 26

Conclusion 26

References 26

Web references 27

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 5 of 27

1 EXECUTIVE SUMMARY
When authoring large scale crowd animations for feature films, the use of simulation techniques to
produce ​realistic results has been an industry standard in visual effects (VFX) for the past two
decades. However, whilst being an incredibly powerful methodology, there are drawbacks. Primarily,
artists aren’t able to make minor edits without having to re-simulate the entire scene, as each frame
of the simulation is deterministic and dependant on the previous one. As such, the turnaround of
shots can be extremely time consuming as full simulations can take minutes, if not hours, to complete
depending on the complexity.

The goal of this work is to speed up the turnaround of crowd shots at DNEG by allowing crowd artists
to be able to reuse, edit and repurpose animations used as inputs to the crowd system. The
deliverable aims to describe the tooling developed and the desired results of:

● Providing tooling so that allows artists to alter the trajectories of characters in a scene in an
artist directable​ manner.

● Allows artists to reuse and repurpose animation so as to reduce the requirement of bespoke
animations having to be created.

● Speed up turnaround of shots by creating automated tooling that addresses common
use-cases, in particular; collision avoidance.

By altering the approach from an evaluation of agent states on each frame, to evaluating the whole
animation of characters within the scene, this deliverable demonstrates the potential of an art driven
and simulation free workflow for crowd creation.

We demonstrate a range of path editing tools and evaluate the usability of each within the context of
high fidelity digital crowd creation. We also demonstrate an approach to collision avoidance based on
this tooling, as well as an animation layering framework.

Whilst a full evaluation of how the tools perform in a production environment has not yet been carried
out, we conclude that the tooling shows a lot of promise and that they will be beneficial to our artists.
We also provide the groundwork for extension into motion synthesis techniques which will be
described in deliverable D5.5.

2 BACKGROUND
Work package 5 focuses on asset transformation, and this document describes the work done in
relation to WP5T2. It also acts as a companion piece for some of the work outlined in WP5T3 which is
described in deliverable D5.5. In that deliverable, parts of the trajectory editing toolkit is used as an
input to the animation synthesis techniques.

The three tools that were specified to be included in this delivery document were as follows:

● “A tool that allows to alter character’s path, based on user input or environment description.”
● “A tool that allows to change style of an animation, or to match style of two animations to

allow them to be seamlessly combined.”
● “A tool that allows to solve for collisions by applying minimal adjustments to animations

already placed in the scene.”

The work done to alter a character’s path can be seen more as a framework that can be extended or
augmented to solve both the first and third bullet points in that list. The tool described in the second
bullet point was adapted slightly, with the approval of the consortium, to focus more on animation
layering. This change was made for a number of reasons, though primarily because the tooling was
both more beneficial to the company, and more fully addressed the goal of asset re-use which is a
key aim of the SAUCE project.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 6 of 27

3 INTRODUCTION
To address the requirements described in WP5T2, this deliverable focuses on tooling to edit mo-cap
data in an artist friendly manner. The tooling presented allows artists to make minor edits to a
character’s path, layer together multiple animations onto a single character to produce new
performance data, and generate edits to the path of characters to remove collisions.

Chapter 4 focuses on the background of path manipulation, describing desired characteristics of such
tooling.

Chapter 5 discusses different implementations, how they address the desired characteristics and what
limitations they possess.

Chapter 6 outlines extensions to trajectory editing to handle collision avoidance.

Chapter 7 describes the work done for the animation layering toolkit, which allows artists to apply
sections of animation from multiple clips to produce new performances.

Chapters 8, 9 & 10 cover conclusions, references and web references.

3.1 Main objectives and goals

The objectives of this work package are simple:
● To improve the quality of crowd shots at DNEG by speeding up the iteration cycle of artists.
● To allow artists to re-use previously made assets in a new context.
● To provide tooling that automates tasks that occur frequently.

All of these objectives serve to make the production of crowd shots more efficient and therefore less
expensive.

3.2 Methodology

As there are a few tools associated with this deliverable, and in particular the trajectory editing toolkit
covers a few different implementations, the methodology for each task is quite varied. That said, a
similar strategy was adopted where practical, namely the development of a C++ backend and a DCC
specific front-end. Implementing the toolsets in this way ensures that we not only have a large
degree of control when it came to optimisations, but also allows us to be DCC agnostic in terms of the
core functionality. This is important when developing tooling for VFX as studios are not fully in control
of the direction of development for third party software. Whilst we maintain communication channels
with the producers of the third party software used at the studio, priorities can change, so we need to
be as flexible as possible to those changes.

For the purposes of this project, testing of initial concepts was done using a simple standalone in
house OpenGL viewer. For artist interaction, the user interfaces for tooling was developed in SideFx
Houdini™ as this is currently the software used at DNEG for crowd creation. More detail about the
integration will be described in deliverable D5.5.

3.3 Terminology

Agent: ​A single animated character in a crowd system.

Character: ​Used interchangeably with ​Agent​.

Constraint: ​A condition of a solve that determines that output animation.

OpenGL:​ An industry standard open source graphics drawing library.

Laplacian Solver: ​A system that ingests input animations and constraints and produces new or
altered animations that satisfy those constraints.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 7 of 27

LU Solver: Solver for sparse matrix of linear equations taking the form Ax = b by way of LU
decomposition [5].

QR Solver: As with the sparse LU solver, solves a system of linear equations but using QR
decomposition [5].

3.4 Relation to the Self-Assessment Plan (D1.2)

As described in the self-assessment plan, over the course of the development of the tooling, we have
continuously been doing benchmark testing and in-house user testing. Moving forward from this
deliverable, user evaluation in experimental production and pipeline evaluation between months
M25-36 will be carried out, and described as part of work package 8 in deliverable D8.3.

4 Requirements of path editing tools
It would perhaps seem reasonable to assume that path editing tools might have the same set of
requirements as curve editing tools since the trajectory of a character can be simply represented as a
curve. However, there are a number of restrictions that must be satisfied when dealing with
animations as we need to ensure that the characteristics of the original animation are maintained.

The goal of the path editing tools are to allow artists to quickly edit the trajectory of locomoting
characters in an intuitive manner and art-directable. This chapter covers some of the requirements
when designing path editing tools.

4.1 Speed of interaction

As one of the primary goals of this work is to ensure that the turnaround of shots is sped up, speed
of interaction is a lynchpin for any path editing tooling. For simple path editing of a single character,
anything short of a fully interactive response to path edits will dramatically impact the artists user
experience with the tool.

4.2 Animation driven positioning

Simply editing the trajectory of character animation by moving keyframes in space would have
unintended side effects on the motion. If, for example, the trajectory was extended with no additional
processing, then the distance travelled by the agent would increase whilst the animation speed would
remain constant. This would introduce foot sliding which would make the animation appear unnatural.

Figure 4.1 illustrates how this animation stretching would result in accelerated movement over the
same timeframe where the dots depict keyframes of the animation.

Figure 4.1: Animation stretching leading to foot-sliding

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 8 of 27

It is therefore important to apply some form of resampling to ensure that this footsliding is
minimised.

It should be noted however, that without some mechanism for procedurally adapting the character’s
motion based on the trajectory using, for example, a motion graph implementation, there will always
be some degree of foot sliding introduced by altering an agent’s path. This is especially true when
introducing turns, as the bipedal motion for walking round a corner is quite different to that of the
motion when walking forward.

That said, any trajectory editing tool that simply remaps animation should at least preserve the
distance travelled.

4.3 Positive and negative constraints

Whilst there are many use cases where an artist may wish to specify that a character is at a certain
location at a specified time, there are also cases where they may which to specify that a character
avoids a specific location. For the purposes of this document, we will refer to these use cases as
positive and negative constraints respectively.

4.3.1 Positive constraints

Figure 4.2 below illustrates how the placement of positive spatio-temporal constraint might look. The
blue crosses denote positive constraints placed in space, associated with a given frame. From this, a
trajectory can be formed.

Figure 4.2: Path following using positive constrates

The properties of the trajectory, and how the constraints should connected, is not covered here, but
will be detailed further in section 4.5.

4.3.2 Negative constraints

Negative constraints might be used when there are certain areas that agents need to avoid. One
example would be if there were obstacles in a scene and an artist wanted to specify that no agent’s
trajectory should pass through a certain area. Another example is that of collision avoidance with

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 9 of 27

other characters in the scene, where we might want to iteratively push agents away from each other
when a collision has occurred.

Figure 4.3 below illustrates how negative constraints could be used to act as an area of avoidance.

Figure 4.3: Path following using negative constraints

4.4 Multi-character constraints

When dealing with the interaction between multiple characters, it is often useful to be able to specify
constraints that affect more than one agent. This is useful in situations where characters need to
interact with each other. If, for example, an artist had animations of two characters walking towards
each other and then fighting, they would need to to be able to specify a distance and frame time as
any interaction like this is both spatially and temporally linked.

For a tool that allows this kind of linking of animation to occur, the resulting animation would need to
be robust to other edits that might occur later. Without this robustness, each edit could affect
previously defined interactions, and editing would become incredibly laborious.

4.5 Shape preservation with second order derivative smoothing

If a constraint is applied to an animation in such a way that it moves the position of the agent at a
given time, it is necessary to ensure that the effects of that constraint are distributed as evenly as
possible over the course of the animation. The figure below demonstrates how a constraint applied to
a section of animation at time Pi would deform the animation trajectory if no smoothing were to be
applied.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 10 of 27

Figure 4.4: Animation constraint with no shape preservation

To ameliorate this kind of discontinuity, it would be desirable to have some kind of second order
smoothing algorithm to spread the effect of such a perturbation over the duration of the animation
clip, or at least between any other constraints. The results of such a smoothing function are shown
below.

Figure 4.5: Animation constraint with shape preservation applied

In this example, the first and last points of the animation are constrained in place, and the point Pi is
constrained and moved. The remaining points are also transformed in order to preserve the shape of
the path, attempting to minimize changes in trajectory and the distances between each point. By
ensuring that this deformation is as smooth as possible, it is possible to minimize obvious foot sliding
and abrupt rotation in the resulting animation.

This simple transformation above can be achieved with a curve-editing tool, but for any more detailed
shapes, this would require many manual edits and rely on the user to preserve the shape by eye.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 11 of 27

5 Implementations of path editing
In this chapter, we describe some of the path editing tooling that has been developed to solve some
of the requirements laid out in chapter 4.

5.1 Spline manipulation

In our first implementation, we attempted to make a simple spline manipulation tool that remaps the
trajectory of the character by translating its root joint based on a control spline, whilst maintaining
the distance travelled by the character so as to minimise any foot sliding artifacts introduced by
stretching the animation.

The viewport controlled spline editing workflow offers a standard spline editing toolkit with controls in
the viewport. This allows an artist to edit the trajectory in real-time using the agent’s full animation
trajectory curve. One downside of this technique, as described in section 4.2, is that it can introduce
some foot sliding when a character turns abruptly. This becomes particularly obvious for animations
where the character is walking in a straight line but the input curve contains a sharp turn. This is a
factor that artists must consider, but for quick edits, especially when the character is far from the
camera, this simple toolkit can dramatically improve the turnaround time of certain shots.

Figure 5.1 shows this tool implemented in SideFX Houdini™ with the trajectory of a number of agents
being altered using the white spline controls. Each of these animations have been altered from a
single straight walk animation.

Figure 5.1: Path editing using spline manipulation

5.2 Implementing shape preservation algorithms

Whilst the spline manipulation tool was powerful, it is very easy to introduce sharp turns and
therefore, obvious foot sliding. To address this, we decided to investigate algorithms that better
handle the foot sliding by preserving the shape of the trajectory. We prototyped a couple of solutions,
one iterative solver, and one laplacian solver and evaluated them in the context of trajectory editing.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 12 of 27

5.2.1 Local Features

In order to preserve the shape and scale of a deformed path we form error functions that minimize
changes in the local features of the path. The 2D path formed by the motion path can be represented
as a triangular mesh where each position forms a triangle with its immediate neighbour, as depicted
in figure 5.2.

Figure 5.2: Shape preservation using triangulation error metric

Any point ​P​i​ on the path may be represented with as its local coordinates, x and y, within its triangle.

 [1] P x(P P) yR (P P)P i = i−1 + i+1 − i−1 + 90 i+1 − i−1

where R​90​ is a rotation matrix

Figure 5.3: Local co-ordinates for the constructed mesh

The desired solution for the deformation would move any points to their constrained positions while
introducing no change in the local x and y coordinates. However, for any deformation that involves

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 13 of 27

http://www.texrendr.com/?eqn=%24%24%0
http://www.texrendr.com/?eqn=%24%24%0

scaling the mesh it is very unlikely there will be a solution that achieves this, so we find an
approximate least squares solution, which attempts to minimize changes in the local features while
satisfying constraints ​—

 ​ [1] (P) || p || w | p c || E = ∑

0−>n
 i

rest − pideformed
 2

 + ∑

iεC
| i

deformed − i
2

where ​P​ is the path, ​n​ is the number of points, ​c​ are constraints and ​w​ is the constraint weight.

5.2.2 Iterative Error Minimization

Our first attempt at a mechanism for solving this was to implement an iterative deformer. For each
iteration, every point on the path accumulates one error for its local position compared to its rest local
position, and another error for any constraints applied to that point. The point is then moved to
minimize that error. After enough iterations, the path is smoothly transformed to satisfy the
constraints.

Below we show how errors are calculated and applied through the initial iterations of a solve. An error
for a position is represented as a translation vector which is the amount the position should be moved
to minimize the error. A position has separate errors to its left and right neighbours, as well as errors
from its neighbours to itself.

P​3​ has an error to a position constraint so is moved by that error vector.

After P​3 is moved, its neighbouring points now have error for their positions local to their neighbours.
Taking P​2 as an example, the red arrows shows the error of its local position in the coordinate system
P​1​->P​3​. The green arrow shows the error applied to P​2​ from P​3​.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 14 of 27

The errors for any point are summed and then averaged for the number of neighbours which have an
influence on the point. In the case of P​2 we divide the summed error by 4, as we are minimizing error
to and from its adjacent neighbours.

A method for reducing the number of iterations required is to consider error beyond just the adjacent
neighbours. This requires applying a weight average of error. The weight of the error can be
calculated from the proximity of a point to its neighbour.

This solver had the advantage of being easier to understand than other methods and quick to
implement as a prototype, but was ultimately too slow for interactive editing.

5.2.3 Laplacian Shape Editing

In an attempt to speed up the solve, another solution was explored. As-Rigid-As-Possible 2D mesh
editing [1] makes use of the Laplacian coordinates of a mesh to form two least-squares solutions of
linear equations that can be solved very efficiently.

Instead of directly editing the vertices of the mesh, the differential coordinates of the vertices can be
used, with the constraints providing the ​known​ vertices on the mesh [3].

The goal of each edit is to translate and rotate local coordinates to preserve the shape/trajectory of
the path, as shown in the shape preserving least-squares solution, and also to scale to reduce the
amount of squash and stretch.

Unfortunately, it is not possible to form a single error function that will both preserve the translation
and rotation, as well as the scale [1]. With As-Rigid-As-Possible editing, the problem is split into two
least squares solutions for shape and scale preservation. The result of the shape preserving step can
then be passed to the scale preserving step.

Step 1: Shape Preservation

 ​[1] (P) || p || E = ∑

0−>n
 i

rest − pideformed
 2

Step 2: Scale Preservation

Using the deformed positions from step 1, for any point ​p​i​deformed the normalised vector to the next
point ​p​i+1​

deformed is found and scaled by the length of the respective rest vector to form ​v​i​deformed​. The
purpose of this was to minimize any change in these vectors so the following least squares error
function could be formed ​—

 ​[4] (P) || (v v) v) || E = ∑

0−>n
 i

rest − i−1
rest − (vi

deformed − i−1
deformed 2

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 15 of 27

Breaking these error functions down into their partial derivatives allows for the formation of a system
of linear equations that was efficiently solved using a sparse matrix LU solver [5].

By using the Laplacian shape editing solver, the speed of interaction was dramatically improved over
the iterative solver, meaning that individual edits could be made in real time. This addresses the initial
requirement in section 4.1 stating that the editing would need to be interactive for any trajectory
editing tools to be usable.

5.3 Group motion editing

Building on top of the laplacian shape editing mechanism described in section 5.2, we wanted to give
users more control when editing crowd scenes involving a large group of characters moving together.
This situation arises often when producing shots, with examples including scenes where soldiers are
in formation, or pedestrians are constrained to walking on a footpath in close proximity to one
another. Manually editing the trajectory of individual agents can be tedious, especially when there are
any more than just a few agents to deal with.

Group motion editing [2] allows users to edit all the paths of a group at the same time, maintaining
the spacing between characters while preserving the local features of their paths which reduces foot
sliding and large rotations.

5.3.1 User Interaction

After laying out a group of characters each with animation, a user can click and drag from any point
on the path of a character and move it, creating a position constraint for that point. This will
simultaneously edit each path of all characters, making it very quick to edit to follow more complex
trajectories. An example of a number of characters being edited as a group is shown in figure 5.4

Figure 5.4: Path editing with formation preservation using group motion editing

Here the group of 14 agents were all walking in a straight line, but a single rotational edit changes all
of their trajectories whilst maintaining their proximity to one another.

5.3.2 Implementation

To achieve these results, we use the Laplacian solver described in section 5.2 with a small extension.
This solver forms an error function that attempts to minimize changes in the local coordinates of each
point on a path while adhering to positional constraints set by the user. While the deformation
described in the previous section was applied on a mesh created from the motion path of an

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 16 of 27

animation, group motion editing connects the individual path meshes of each character, adding edges
between neighbouring points and applying deformation to the entire mesh at once.

Figure 5.5: Mesh construction for As-Rigid-As-Possible deformation for group motion editing

5.3.3 Further Work

Although the shape deformation solver attempts to preserve the spacing between, the minimization of
error over the entire mesh can still lead to overlapping trajectories, in which case, manual edits or
some form of collision avoidance algorithm would need to be applied. As part of this work packet, we
have implemented an iterative collision avoidance algorithm which will be detailed in chapter 6.

Any deformation of a motion path may stretch or squash the distance between points, resulting in
foot sliding and unrealistic speed of movement. This is partially addressed in Group Motion Editing [2]
by time warping deformed animations to match their original speeds, although the foot sliding will still
be present. Instead, the group motion editing could be integrated with the motion graph
implementation developed for deliverable D5.5 which, based on the desired position constraints,
creates new animation data that may have more or fewer frames of animation depending on any
edits made. However, this is future work and not in the scope of this deliverable.

5.4 Constraint based path editing tool

The group motion editing implementation represents a powerful step forward towards a simulation
free crowd editing toolkit. That said, it doesn’t provide us with all the tools required to move away
from simulation completely. This is because it is designed mostly as a deformation framework that
happens to use crowd characters as its “mesh”.

For this reason, we have developed another tool that allows artists to define constraints, and solve for
appropriate animation. Part of the reason for this is that we want to be able to define character
interaction. This will be covered in more detail in section 5.4.2.2 with our introduction to relative
position constraints.

For simple trajectory editing however, we can introduce spatio-temporal constraints that specify that
an agent must be at a particular point in space at a given time. The deformation must satisfy the
constraint of following the path but also minimize the amount of deformation of the original captured
data in order to maintain a realistic performance.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 17 of 27

Our editing tool provides the user with the means to easily make large edits, while preserving the
details of the source data at interactive, real time performance.

5.4.1 Animation Processing

The spatial animation data being edited is the trajectory/path the character will follow. To have a
starting point for deformation, this trajectory must first be extracted from the animation. This is done
by simply using the position of the root joint at each frame. For animations without a root joint, this
joint is added by projecting onto the ground directly below the hip joint. The rotation of the joint is
calculated from the tangent of the path, i.e, the normalized vector between the previous frame’s root
position, and the next frame [4].

For stationary animations where the tangent of the path may have any arbitrary direction, the
rotation is set as a constant. Stationary sections of animation are described by the user using a
tagging system in which a given frame range is tagged as “Stationary”. This tag is also used later
during shape deformation as a hard constraint to maintain the shape of stationary animation, as even
slight deformation is very obvious and damaging to fidelity.

Methods exist to automatically detect stationary animation but to handle a large number of
animations accurately is beyond the scope of this project. Although requiring manual user input, a
tagging system is a robust and re-usable solution.

5.4.2 Constraints

Constraints act as a user-interface for editing animation data. We provide constraints for editing the
motion path, time-mapping and interaction between characters [4]. Each constraint is placed upon
frames of animation, and where appropriate may have a duration of frames to which they are
applied.

5.4.2.1 World Position

At frame f, places the root position of the animation at position p. Used as a handle for editing the
motion path of an animation.

Figure 5.6: Example of editing World Position Constraints.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 18 of 27

5.4.2.2 Relative Position

A relative position constraint constrains the root position of animation A at frame f1, to the root
position of animation B at frame f2. The direction and distance between the frames is set with a
user-defined constant vector. This may be used for character interaction e.g. two characters meeting,
walking alongside each other or fighting. The constraint is easily set and maintained regardless of
changes in other constraints.

Figure 5.7: The relative constraint from A to B is maintained while Anim B is edited.

5.4.2.3 World Time

This constrains frame f to occur at time t, smoothly time warping the animation.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 19 of 27

Figure 5.8: Root positions drawn at constant time intervals demonstrate the smooth time warping.

5.4.2.4 Synchronised Time

Similar to the Relative Position constraint, constrains the time of frame f1 of anim A to frame f2 of
anim B, with a constant time difference of t. Can be used in various situations of character
interactions, shaking hands, clashing swords, or reacting to an in-scene event can all be precisely
timed and resolved regardless of edits to the timing of the animations prior to the constraint.

5.4.2.5 Stationary Animations

Any deformation of a stationary section of an animation will result in very obvious sliding or rotation.
Therefore, for any frames that have the user-defined “Stationary” tag, we add the shape preserving
function as hard constraints across both steps, which will prevent any deformation.

Figure 5.9 Locomoting animation with a stationary section in the middle.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 20 of 27

Figure 5.10: World position constraints are edited but no deformation occurs at the stationary section of the animation

5.4.2.6 Laplacian Time Warping

Time mapping data describes what time each frame of an animation occurs at which can be warped
to meet the timing requirements the user has set using constraints.

The undeformed animations have a constant time interval between frames. In order to smoothly time
warp an animation we form an error function that will try to minimize changes in the interval between
frames. Unlike the spatial deformation, we only need to form a single error function [4], which in our
system is the same as the scale preserving function of the spatial deformation ​—

 (T) || (interval interval) interval) || E = ∑

0−>n
 i

rest − i−1
rest − (intervali

deformed − i−1
deformed 2

where ​T is the time map data of the animation, and interval is the difference between the time at
frame ​i​ and ​i+1​.

5.4.3 Linear System Solver

Systems of linear equations can be represented as matrices, for example ​—

x b y c 0a1 + 1 + 1 =

x b y c 0a2
+ 2 + 2 =

a, b and c are known constants, and we are solving to find x and y. This can be translated into matrix
form as follows ​—

In order to solve the least squares problems we need to put the data into a form that can be solved
by a LU solver ​—

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 21 of 27

x bA =

where ​A is a sparse matrix of r rows and c columns. It stores the partial derivatives of our least
squares solutions.

𝑥 is a vector with r elements of unknown values which is what we are solving for. The result of ​𝑥 will
store the positions the deformed animation paths, or the time values for the animation time maps.

b is a vector of known values, i.e constraints and desired differences between partial derivatives of
the points/times.

We use the Eigen library [5] which provides a number of solvers for sparse linear systems, of which
we found the umfpack [6] LU solver to be the fastest of those tested. One issue that could arise with
a LU solver was in cases where matrix ​A was a singular (non-invertible) matrix. A sparse LU solver
requires a matrix that can be inverted, so in cases where it is not we fall back to using one of the
more stable but slower options such as a sparse QR solver [5].

6 Collision avoidance via path editing
The constraint based path editing tool described in section 5.4 provides a framework on top of which
a collision avoidance scheme can be built. This chapter details some of the approaches explored.

All of these approaches involve changing the trajectory of an agent when a collision is detected,
pushing the agents away from the point of collision. Any change in trajectory however may push an
agent into the path of another agent, causing a new collision. We therefore iteratively apply these
adjustments ​— checking for collisions, pushing trajectories and repeating until no more collisions have
been found or a maximum number of iterations has been reached [2].

Collisions are found by sampling the positions of agents at constant time intervals, and for each pair
of agents find the maximal point of overlap between the collider capsules placed on the agent. For
each maximal collision we then use the Laplacian path editing tool detailed in section 5.2 to move the
colliding points of the two trajectories apart in the direction of the vector between the two points. We
do this by creating a positional constraint between the points and solving for the paths of the agents,
subject to the user-defined constraints. The formation of these collision constraints underwent a few
iterations before finding a robust solution.

6.1 Relative Position Constraint

We initially used Relative Position constraints, seen in section 5.4.2.2, which enforce a world direction
and distance between two points. However, this only yielded reasonable results in very simple
scenarios. Constraining the world direction between two points could lead to unnatural trajectories
with a large amount of squash or stretch, particularly as the constraints accumulate with each
iteration and therefore may conflict with one another.

6.2 Mesh-based Constraints

The next iteration represented the collision constraints as an edge in the colliding path meshes,
maintaining the distance between collision points in the same way local features of the path are
handled. Representing the constraint using local coordinates generally gave smoother results, and
could handle straight-forward scenarios.

Figure 6.1 demonstrates the result of such a collision avoidance scheme.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 22 of 27

Figure 6.1 Shape and scale preserving constraints are added between colliding points.

However, as with the relative position constraints, situations that required more iterations to solve,
i.e, densely populated areas of agents with numerous collisions, led to an accumulation of conflicting
constraints which resulted in a nest of colliding paths that didn’t converge on a solution.

6.3 Solution

The previous attempts both involved adding new constraints to the original source animation each
iteration and resolving, which led to over-constrained paths bunching together. The solution we found
to this problem was to use the resulting animations of the previous iteration as new source animation
of the solve. We then only apply the mesh-based constraints of the previous sub-chapter for the
maximal collisions at each iteration.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 23 of 27

F​igure 6.2 A densely positioned set of agents resolve their collisions after 10 iterations.

One downside of this approach is that we may accumulate additional error in the paths with each
iteration, leading to some foot sliding. As we are using an already deformed animation as the source
of a new solve, we no longer maintain the shape preserving local features of the original animation,
and with each iteration may introduce more and more deformation. However, as most collisions can
be resolved in a low number of iterations the error is generally acceptable.

This solution also is also computationally slower than previous attempts, as we need to fill sparse
matrices with new data rather than using the existing data of the original animation. As such, we
conclude that collision avoidance should be applied as a post-processing function rather than during
user-editing.

7 Animation layering toolkit
Animation layering involves overlaying the poses of one animation, which we will call the layer
animation, over the poses of a source animation. Layering can be applied at run-time, reducing the
need for an animator to produce new assets, and giving artists flexibility to re-use existing

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 24 of 27

animations. This allows them to create a wide variety of new animations that fulfill the requirements
of their shot.

A common use of layering is to apply a different upper-body animation on top of a source locomotion
animation (walking, running, etc.). A scene involving a street of walking pedestrian could re-use
stationary animations of characters using their phones, fidgeting, gesticulating etc., and apply these
on top of their walk animations to introduce more variety and life. The layered animations are very
quick and simple to edit and add no per-character memory cost.

Figure 7.1: Gesticulating layered animation applied to walking source animation.

7.1 Layering Techniques

To layer an animation we first specify a joint of the source animation skeleton. The layering is applied
to that joint and every child joint throughout the skeleton. To apply upper body animation we may
select a hip, or lower spine joint, which will layer the upper body animation from the spine to the
fingers of each arm and the head.

A weight is also specified, which can change how much of the layer animation to apply on top of the
source animation. This can be used to alter the look of the animation and potentially add
randomisation or variety if multiple characters are using the same animations.

We have implemented two methods for layering, blending and additive.

7.1.1 Blending

For each pose in the source animation, we linearly interpolate the local joint transforms from the
source transforms to the layer transforms. With a weight of 1.0, the resulting animation will use
100% of the local joint transforms of the layer animation, and 0.0% of the source transforms.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 25 of 27

7.1.2 Additive

For the majority of situations additive layering produces higher quality animations than blending.
Instead of linearly interpolating, the layer animation is added on top of the source animation,
preserving both animations [7].

For example, we may apply a stationary layer animation of a character talking on their phone to a
walking source animation. When blending, this can produce a stiff output animation where the whole
upper body swing with the movement of the walking hips, while the spine and shoulders lose the
sway that comes with a walk. As additive layering applies the layer local transforms on top of the
source, we have the animation talking on the phone while preserving the walking movement which
produces a better quality output.

Figure 7.2: Seated and on the phone layered animation applied to walking source animation.

8 Conclusion
Over the course of the time spent on the work package, significant progress has been made in
developing new workflows for our artists that don’t require simulation.

The tools set out in this document are designed to improve the quality and speed of turnaround of
crowd shots at DNEG. Some of the tooling described, specifically the animation layering toolkit, has
been deployed to artists and is already allowing artists to re-use sections of animation instead of
requiring new animation to be created. The full extent to which this tooling will speed up the
turnaround of shots is still yet to be determined, and will require further investigation.

When evaluating the path editing tooling, whilst the developer testing of workflows appears to
address a lot of the user requirements, it is unclear to what extent the new features will improve the
workflows of artists until they are tested in a production environment.

Integration work with asset synthesis techniques has been employed and is discussed in further detail
in deliverable D5.5.

9 References
[1] Igarashi, Takeo, Tomer Moscovich, and John F. Hughes. 2005. “As-Rigid-as-Possible Shape Manipulation.” In ​ACM
Transactions on Graphics​, 24:1134–41. doi:10.1145/1073204.1073323.

[2] ​Kwon, Taesoo, Kang Hoon Lee, Jehee Lee, and Shigeo Takahashi. 2008. “Group Motion Editing.” In ​SIGGRAPH’08:
International Conference on Computer Graphics and Interactive Techniques, ACM SIGGRAPH 2008 Papers 2008​.
doi:10.1145/1360612.1360679.

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 26 of 27

[3] Sorkine, Olga, and Marc Alexa. 2007. “As-Rigid-As-Possible Surface Modeling.” In ​Eurographics Symposium on Geometry
Processing (SGP)​, edited by Alexander Belyaev and Michael Garland, 109–16. Aire-la-Ville, Switzerland: The Eurographics
Association. doi:10.2312/SGP/SGP07/109-116.

[4] Kim, Manmyung, Kyunglyul Hyun, Jongmin Kim, and Jehee Lee. 2009. “Synchronized Multi-Character Motion Editing.” In
ACM Transactions on Graphics​. Vol. 28. doi:10.1145/1531326.1531385.

10 Web references
[5] ​http://eigen.tuxfamily.org/

[6] ​http://faculty.cse.tamu.edu/davis/suitesparse.html

[7] ​https://www.gdcvault.com/play/1012300/Animation-and-Player-Control-in

SAUCE_D5.4_Tools for editing mo-cap data_20191205_DNEG 27 of 27

http://eigen.tuxfamily.org/
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://www.gdcvault.com/play/1012300/Animation-and-Player-Control-in

