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1 EXECUTIVE SUMMARY 
When creating crowd scenes for VFX productions, artists rely either on an animation library              
comprising clips created on previous productions, or a mo-cap department creating bespoke motion             
for their particular show. At DNEG, whilst there is tooling to setup and trigger transition points                
between animations, this tooling currently relies on a simulation framework. Whilst extremely            
prevalent throughout the industry, and incredibly powerful, simulation has associated costs, including            
a lengthy iteration cycle for complex setups. Because of this, DNEG has a goal to move away from                  
simulation frameworks so as to increase the speed of turnaround of shots. As such, a new approach                 
is proposed to allow artists to define and interact these transition points. 

In this deliverable, we describe work done to automatically create a motion graph from a set of input                  
animations by analysing optimal transition points, and constructing appropriate transitions. We also            
detail the integration of the motion graph with the ​Constraint Based Path Editing Tool ​described in                
Section 5.1 of Deliverable 5.4. This ​Combined Trajectory and Motion Solver​, ​or ​CTAM solver as it will                 
be referred to in this document, is then extended to allow for additional constraints to augment its                 
capabilities. 

When combined with user facing tooling, this new method provides a powerful alternative to              
simulation techniques, whilst maintaining user control and speeding up the iteration cycle for artists.              
The tools have yet to be tested in a production environment, so the extent to which this tooling will                   
improve the speed and efficiency of representative shots is as yet unknown. However, initial testing is                
extremely positive. 

 

2 BACKGROUND 
Work package 5 focuses on asset transformation and this document describes the work done in               
relation to WP5T3. It also acts as a companion piece, building on some of the work outlined in WP5T2                   
which is described in deliverable D5.4. In that deliverable, a trajectory editing toolkit is described               
which is extended here. For more information about the techniques employed to produce that work,               
the reader is directed to that document. 

The tools that were specified to be included in this delivery document were ​— “​Various tools                
implementing methods from motion graph-related publications.” 

As such, this document describes the work done to augment and extend the trajectory editing tools of                 
WP5T2. It describes some use cases that previously would be satisfied by a simulation framework,               
whilst assessing whether the same requirements can be addressed using a more ​artist-driven             
framework. 

This work is designed to both speed up the turnaround of shots, making the work both cheaper and                  
of a higher quality, whilst also reducing the requirement for additional assets to be created from                
either the animation or mo-cap departments. 

 

3 INTRODUCTION 

To address the requirements described in WP5T3, this deliverable focuses on tooling for asset              
synthesis, focussing on the construction of new animation data. The tooling presented allows artists              
to automatically generate a motion graph from input animations, label sections of animations with              
specific actions, and specify constraints to alter the animation. This is all done using interactive               
viewport controls. 

Chapter 4 introduces motion graphs as a concept, and some of the mechanisms by which they can be                  
constructed. It then details our implementation, and some of the design choices that were made.  

Chapter 5 discusses the integration of the motion graph work with the trajectory editing toolkit               
detailed in deliverable D5.4 along with some optimisations that were adopted to speed up evaluation. 
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Chapter 6 sets out the integration of the tooling described in chapter 5 into SideFX Houdini . It                 1

describes the use of viewport interaction tools and how attribute data is converted into our core                
data-structures. 

Chapters 7, 8, 9 and 10 cover conclusions, references, web references and abbreviations.  

 

3.1 Main objectives and goals 

The objectives of this work package are simple:  

● To improve the quality of crowd shots at DNEG by speeding up the iteration cycle of artists. 

● To allow artists to re-use previously made assets in a new context. 

These objectives serve to make the production of crowd shots more efficient and therefore less               
expensive. 

 

3.2 Methodology 

The work was structured in such a way so as to be both as performant as possible, whilst also having                    
user facing interactive tools that artists can use. As such, the approach taken was that of a C++                  
backend and a DCC specific front-end. 

Implementing the toolsets in this way ensured that we not only had a large degree of control when it                   
came to optimisations, but also allowed us to be DCC agnostic in terms of the core functionality. This                  
is important when developing tooling for VFX as we are not fully in control of the direction of                  
development for third party software. Whilst we are in constant communication with the producers of               
most third party software, priorities can change, so we need to be as flexible as possible to those                  
changes.  

For the purposes of this project, all of the user interfaces for the tooling was developed in SideFx                  
Houdini™ as this is currently the software used at DNEG for crowd creation.  

 

3.3 Terminology 

Motion Graph: An interconnected graph of motions that can be traversed to produce dynamic              
motion based on some path based input. 

Packed Primitive: A SideFX Houdini™ concept allowing binary data to be passed through the node               
graph. 

 

3.4 Convention 

In this deliverable will use ​italics​ for emphasis and ​monospace​ for code and pseudo code. 
 

3.5 Relation to the Self-Assessment Plan (D1.2)  

As described in the self-assessment plan, over the course of the development of the tooling, we have                 
continuously been doing benchmark testing and in-house user testing. Moving forward from this             
deliverable, user evaluation in experimental production and pipeline evaluation between months           
M25-36 will be carried out, and described as part of work packet 8 in deliverable D8.3. 

 

1 Houdini is a procedural animation application used widely in the visual effects industry. It was 
developed by software studio SideFX. 
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4 MOTION GRAPHS 
Crowd shots will often require characters to follow user defined paths, perform actions for varying               
lengths of time, and display variation amongst up to hundreds of thousands of characters. With only a                 
limited number of animations available to fulfill these requirements, artists need to loop, trim and               
blend these animations which, when done manually, can be a long and laborious task. 

If, for example, an artist needed an animation in which the character stands for 5 seconds, walks                 
along a path, jumps over an obstacle and continues walking, they would need to loop animations and                 
blend from one animation to another. This would require them to scrub through a number of                
animations, visually comparing frames that are suitable to blend, then requesting an animator to              
produce the blended animation. 

The construction of anything more complex than this simple example can take a long time, and would                 
need to be done for every combination of bespoke animations that were required for their show. This                 
could also include multiple versions of the same animation type, but with different transition points to                
add in some variation so that all characters aren’t using the exact same motion, commonly known as                 
twinning​. If we introduce the trajectory of those characters into the requirements, the number of               
combinations becomes completely unmanageable. 

To address this problem, we have implemented a Motion Graph [1] implementation which can              
automatically produce seamlessly blended animations given user-defined constraints. 

Motion graphs offer a data-driven technique to very quickly build the best available animation using a                
database of animation defined by the user. The animation that is output is subject to user-defined                
constraints, generally a path for the character to follow and labels which can be used to specify that                  
certain sections of animation are included. 

It does this by comparing all animations in its database, finding poses that are similar, and defines                 
them as blend/transition points. If pose x from anim A is found to be a good match for pose y of anim                      
B, it will create a set of blended frames of animation from A to B at those points.  

Sections of animation from the inputs, and the newly created blended animation are then stored as                
nodes in a graph which can be searched. The best path through the graph is then evaluated based on                   
how closely they follow an input trajectory and adhere to label constraints. The ultimate goal is for it                  
to return an optimal animation from the best branch of the graph search. 

 

4.1 Use Cases 

Some form of automatic motion generation like this is heavily used in the games industry because                
they have a requirement on realistic animation being generated based on user inputs. This section               
details a couple of the added benefits of such a system for visual effects (VFX) and in particular crowd                   
generation. 
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4.1.1 Path Following 

 
Figure 4.1: Appropriate turning animation is found based on a path defined by 4 positional constraints. 

 

In this example, the motion graph is constructed using a single animation clip of a character walking                 
forward, and performing a number of turns. The input animation comprises the character walking              
forward in a straight line, turning 90​o right, continuing straight, then turning left 90​o​. The character’s                
path is determined, in this case, by a number of positional constraints.  

The animation built by the motion graph which seamlessly loops the straight line walk for as long as it                   
needs, transitions into a left turn then two right turns with additional frames of straight walking in                 
between. 

 

4.1.2 Labelled Animation 

Trajectory alteration is not the only use case for a motion graph. It is also possible to label specific                   
sections of motion, or whole animations with semantically meaningful information and use that as an               
input to direct how the graph is traversed. 

 
Figure 4.2: A running animation transitions into a kick can be labeled as both for later motion graph traversal. 
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A common crowd shot in film involves people in stadiums watching and cheering. Although a motion                
graph is especially useful for locomotion, labels and a stationary path can still be used to easily put                  
together a standing and cheering animation, which can be randomized and timed for a realistic               
stadium crowd. 

 

4.2 Transition Map 

The detection of good transition frames, which are used to blend from one animation to another, is a                  
preprocessing step in which every frame of animation is not only compared with every frame of all                 
other animations, but also itself. From this comparison, each pair of frames is assigned a cost.  

Depending on the input density of the graph, a number of pairs with the lowest cost are used as the                    
transition points in the graph [1].  

 

4.2.1 Pose Similarity 

We currently use four metrics for evaluating if two poses match well [2] ​— 

 

4.2.1.1 Local joint positions 

For every matching joint in the skeletons of the two poses compare the difference of their positions                 
local to their parent joint. 

 

4.2.1.2 Local joint velocities 

Calculated as the change in local rotation from the next frame’s joint position to the previous. Local                 
joint positions can find matching poses but velocity can differentiate poses that are travelling in               
different directions for example, a forward walk pose and backward walk. 

 

4.2.1.3 Root joint world velocity 

Calculated as difference in root joint world position from the previous frame to the next. Comparing                
poses from a walk and run will return a high cost. 

 

4.2.1.4 Root joint world angular velocity 

Change in root joint world rotation from the previous frame to the next. Differentiates poses that may                 
be turning in different directions, or constant rotation animations to turning ones. 

 

The aim in selecting transition points is firstly to find strongly matching poses, but also to spread the                  
transitions out amongst the animations so the graph is well connected and capable of producing any                
number of frames of animation. To do this we select the local minima with the lowest costs. 

If frame x and y of two animations evaluate to a low cost, it is likely their neighbouring frames will                    
tool, which would likely cluster the transitions in one section of the animation [1]. 

When comparing one animation to itself, comparisons of frame x and frame y are not accepted as                 
options for transitions if y-x is within a certain radius, as these will be found to match well but will not                     
provide us with a useful transition that reaches another part of the animation. This explains the black                 
diagonal line in figure 4.3. 
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Figure 4.3: Visual representation of optimal transition points in an animation measured against itself. 

4.3 Graph construction 

We use the list of pairs of transition frames to split up the input animations and place the segments                   
into nodes which will make up the directed graph. Nodes are always connected in one direction to                 
nodes that represent an animation that can be appended. At transition frames, we create a new                
segment of blended animation which is stored on a node and then inserted into the graph. 

 
Figure 4.4: Visual representation of node graph construction where each segment represents a node in the graph 

and the blend duration is 7 frames. 
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When searching the graph we do not want to visit any nodes that lead to a dead end [1]. Therefore                    
nodes which do not have any outgoing edges leading into the best connected nodes of the graph are                  
removed, as these will limit the breadth of animation available or produce animation that will not be                 
able to loop.  

To do this we run a graph Strong-Connected-Components algorithm, available in the            
Boost-Graph-Library [3], which can be used to filter out nodes that are not part of the best connected                  
section of the graph. 

 

4.4 Searching for Motion 

Building good animation is an optimisation problem in which we traverse the graph, evaluating each               
node’s animation to assign a cost. The resultant animation is the one with the lowest accumulated                
cost at the end of this traversal. A low cost animation is one that follows the path input by the user as                      
closely as possible, and adheres to any input label constraints. 

Starting at a given node, we sequentially visit any nodes connected to each other through their                
directed edges, branching when nodes have more than one edge. Each visit involves appending the               
node’s animation to an animation built up from previously visited nodes in this branch. The cost of the                  
most recently appended frames is then evaluated and added to the summed cost of that branch. 

For the standard motion graph implementation, we have implemented a path similarity metric,             
described here. This works well for when we have an input trajectory driving the output, but can have                  
some limitations when we need the output motion to exactly follow a path. These limitations will be                 
described in section 5.1.1. 

 

4.4.1 Path Similarity 

We find the squared distance from the root position of each evaluated frame to an interpolated                
position on the path [1]. Before evaluating, the animation is transformed so that the path starts are                 
the same. Moving forward, it would be good to evaluate whether this can be improved by using                 
techniques that fit the entire animation to the path, such as SVD [4]. 
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Figure 4.5: Determining a cost function for path similarity. 

 

4.4.2 Labels 

For the purposes of the motion graph, a label is a string tag associated with a frame range                  
semantically describing sections of an input animation. When a user wants the motion graph to insert                
a specific style of animation, they must first label their input source animations as desired. For                
example, any animations with a walking section may be labelled “Walk” on those frames. 

It is then possible for the artist to create label constraints which guide the motion graph to output                  
animation where the specified frames contain that label. This is enforced during the motion graph               
search by applying a high cost onto frames that do not satisfy the label constraints, which pushes the                  
search into transitioning into a correctly labelled animation as soon as possible. 

 

4.4.3 Search Optimizations 

On any search of the motion graph we find an animation that has the lowest cost where any search                   
of a branch is terminated, and when the animation of that branch has enough frames to satisfy the                  
constraints. A well connected graph with a few hundred frames of animation may have millions of                
potential branches meaning a full depth-first-search of all branches is impractical.  

Instead we employ a branch and bound search method [1]. During the search, the optimal animation                
and its cost is cached, and any branch that accumulates a score greater than this will immediately                 
terminate. This greatly reduces the number of branches searched, and for very large graphs in our                
testing, could reduce the evaluation time from hours to seconds. 
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However, the number of branches needing to be searched increases exponentially as the desired              
animation length increases. Therefore we can optimize the search by evaluating a fixed number of               
frames at a time, then restart the search. To ensure that the quality of animation is not too adversely                   
affected by this technique, the search restarts at an earlier point than where it finished last time to                  
ensure a few frames of padding are incorporated. Whilst the effectiveness of this particular              
optimisation varies with animation length, the estimated speed up for common use cases was              
between 5 and 10 times faster. 

 

5 Integration with deliverable D5.4: Tools for Editing Mo-Cap Data 

In work package D5.4 we implemented a constraint-based path-editing tool which uses a Laplacian              
shape deformer to edit the motion path of an animation while preserving the local features of that                 
path, resulting in animation with minimal foot sliding or loss of detail from the source mo-cap data                 
[5]. 

Although both the motion graph and deformer can be decoupled and are useful tools on their own,                 
combining them elevates the results either one can produce and give us an extendable solution for                
interactively creating realistic animation. For the purposes of this document, we will refer to this               
solution as a ​Combined Trajectory and Motion​ solver, or ​CTAM​ ​solver. 

The user interacts with the solver by providing a database of animations for the motion graph to use,                  
and a set of constraints which are used by both the motion graph and the Laplacian deformer.  

The data flow of the CTAM solver is shown in figure 5.1. 

 
Figure 5.1 CTAM solver data flow. 
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5.1 Combining Tools 

A motion graph returns the best animation available based on the source animations that have been                
used to construct it. It is therefore highly dependant on the source animations for how well the                 
output animation can follow the given path. For example, if we construct the graph with walking                
animations including 90​o turns, but given a path with a 45​O turn, the animation shown below in figure                  
5.2 may be the lowest cost choice that the motion graph can return. 

 

 

Figure 5.2: Non-optimal motion graph output based on input trajectory. 
 

We therefore need to edit the root positions of animation so it can more closely follow the path. For                   
this we use the Laplacian shape deformer described in deliverable D5.4. 

As described in that document, this path editing tool minimizes deformation as much as possible, but                
without any motion synthesis, any large edits will still noticeably scale the path. This can result in in                  
foot-sliding, and unnatural speed of movement in animations. 

However, by inputting the deformer with the animations that have been synthesised from the motion               
graph using the same constraints, a small amount of deformation is required, so foot sliding is                
minimised. 

 

5.1.1 Evaluating Animation using Laplacian Shape Deformer 

Feeding the output of the motion graph into the deformer ultimately produces seamless animation              
that fulfills the continuous requirements of the motion solver. However, it is also possible to integrate                
the deformer into the evaluation step of the motion graph search, improving the selection process for                
the best animation. 

When evaluating an animation, we use the Laplacian deformer to solve the animation for the               
user-defined constraints, then measure how much deformation is required. We call this measurement             
the ​Deformation Energy ​[5]. This is defined as the change in the local coordinates of each position of                  
the path. The greater the change in positions, the higher the cost assigned to that animation. 

The difference in the Deformation Energy method and Path Similarity method (sub-chapter 4.1.1) can              
be illustrated in the evaluation of the following two animations ​— 
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Figure 5.2: Comparison of two animation evaluation methods, Path Similarity and Deformation Energy. 

 

Using the Path Similarity method, Anim B would be returned as it has a smaller accumulated error in                  
its positions. However, when using the Deformation Energy method Anim A would be chosen, as only                
a small amount of deformation at point P2 is needed to straighten the animation and fit it to the path.                    
Anim B, on the other hand, would need a larger deformation at P6. 

When the animations output by the motion graph are ultimately deformed to fit the constraints, Anim                
A gives us a higher quality animation with less obvious deformation. The deformed animation of B                
would display foot sliding and shifting of weight around P6 as the right angled cut turn is straightened                  
to fit the path. 

 

5.2 Current Limitations 

The solver is a powerful animation editing tool and can be extended with additional constraint types                
or animation post-processing steps such as layering or IK. There are however still limitations in its                
usability. This section details some of the elements that could use improvements. 

  

5.2.1 X-Z Solves 

The Laplacian shape deformer currently only solves for values of root joint positions on the x-z plane,                 
whilst the y position is simply projected onto the floor. Further investigation and work is needed to                 
produce a full 3D solve, and to select appropriate animations in the motion graph which depend on                 
the changes in height of a trajectory. 

SAUCE_D5.5_Tools for splicing together animation clips_20191112_DNEG 16 of 26 
 



 

This would allow for fast creation of animations moving on stairs and steep slopes, which are typically                 
among the more challenging animation requirements. 
 

5.2.2 Interactive Editing Performance 

The performance goal of the solver is for users to be able to click and drag constraints in an                   
interactive viewport, and create new animations in real time. Although the solver can reach speeds of                
up to 60fps with a low number of animations in the motion graph and short output animations,                 
interaction becomes less reactive as these factors increase. 

The limiting factor in the solver’s performance is currently the motion graph search, for which the                
time complexity can increase exponentially as the density (number of nodes) of the graph increases.               
Ideally a flexible database of animations could be re-used in the motion graph with various types of                 
locomotion and actions, but in order to keep the density of the graph low a user would need to tailor                    
the animations used to that only fill the requirements of their current scene, potentially using different                
motion graph instances for different agents. 

 

5.2.3 Spatial Constraints with User-Defined Frames 

Currently to describe a path for an agent to follow, the user may place World Position constraints                 
which specify the root position at which a given frame of the output animation should be positioned.                 
Although this gives the user a low level of control of the animation produced, this can easily lead to                   
noticeable stretch of the animation when too few frames are specified for the distance between               
sequential constraints. 

For example below, two constraints have been set on frame 0 and frame 6, at a distance further than                   
any animation in the motion graph travels over 6 frames, therefore stretching the path. 

 

Figure 5.3: Stretched keyframes resulting from spatio-temporal constraints. 

To obtain high quality animation the user must either move the constraints closer or increase the                
frame number of C2, which can take a large number of adjustments and iteration. 

To address this, it would be possible to introduce a constraint that creates an ordered path with no                  
requirements for frames to be set. This could potentially offer a simple method for creating animation                
with minimal foot sliding, but with less control over the timing of the animation. 

 

6 Houdini integration 
When integrating new functionality into any DCC, it is important to design the tooling to match                
standard workflows so as not to alienate the users who are used to working in particular ways. As                  
such, a lot of care and attention was spent ensuring that the workflows married up with standard                 
Houdini best practices at DNEG. An added benefit of this approach, was that we were able to                 
leverage a lot of standard tooling and UIs that are provided by SideFX, which reduced the                
development burden. 
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6.1 Wrapping the core functionality 

This section details the building blocks developed so that we could convert the data from native                
houdini data into the C++ data objects required for the CTAM solver to work. 
 

6.1.1 Creating custom packed primitives 

Houdini allows for custom data to flow through its node graph using a concept known as ​packed                 
primitives​. A packed primitive intended as a way to reduce the memory footprint of many instances of                 
heavy geometry, whilst providing some viewport representation to the user. Houdini ships with many              
packed primitives including an ​Agent packed primitive which allows crowd data to be encapsulated              
and passed through the graph. The concept also provides a mechanism to wrap custom blind data,                
which will be interpreted by the nodes that know how to evaluate it. 

To allow the processing of animations, we needed to be able to pass our custom animation and                 
motion graph data structures through the houdini graph for later use as input animation for crowd                
agents. 

The reasoning behind wanting to create these custom packed primitives is that, whilst Houdini              
provides many contexts in which that data can be manipulated (channel data, compositing etc.), the               
crowd workflows are in a geometry context which only operates on geometric data. 

The level to which attributes are exposed through the Houdini attribute interface is up to whomever is                 
exposing the data. For our purposes, it was felt that the ability to manually edit any of the animation                   
data through scripting languages was not required, so a rather shallow integration was adopted. This               
meant we only needed to expose serialisation/deserialisation mechanisms, and drawing code. This            
decision might need to be revisited in the future if scripting does become a requirement. 

 

6.1.2 Animation editing tools 

To allow artists to quickly edit sections of animation we developed some trimming and looping tools                
along with tooling that allows them to label sections of animation with semantically meaningful tags. 

The trimming tooling allows artists to minimise the amount of animation data going into the motion                
graph, which in turn makes the solver more performant. This is because the size of the motion graph,                  
and therefore its speed of evaluation is determined by its density.  

The tools shown in figures 6.1 and 6.2 allow artists to quickly and easily trim, or loop animations. 
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Figure 6.1: Tools for trimming animations 

 

Figure 6.2: Tools for looping animations 

 

Figure 6.3 shows how sections of the motion can be labelled. This can be done on an entire                  
animation, or, in this example, multiple subsections of an animation. 

 

Figure 6.3: Tools for labelling animations 

 

6.1.3 Converting Houdini data to constraint data 

The Houdini API allows for arbitrary data to be added to point instances, and for that data to be                   
connected in some way to controlled by UI elements. This is the standard way that a Houdini TD will                   
manipulate geometry as data passes downstream, and is extremely quick for prototyping. 

By creating C++ nodes that interpret this point data and convert the attributes to the appropriate                
constraint types as C++ objects, it is possible to easily connect up the UI elements as inputs to the                   
CTAM solver. 
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An example of how this point data is formed is shown below in Houdini’s geometry spreadsheet (a                 
spreadsheet view of arbitrary data associated with points or primitives.) 

 

Figure 6.4: Constraint class data represented as houdini attributes. 

These parameters are fed into a factory mechanism that, based on the ​constraintclass attribute,              
will construct the appropriate constraint, and feed in its parameters correctly for evaluation. 

 

6.2 Viewport interaction 

To make the tooling user friendly, the addition of viewport controls is essential. It has always been                 
possible to provide custom viewport interaction in Houdini by implementing input hooks as exposed              
by the Houdini Development Kit (HDK). The downside of doing this however is that the development                
cycle is fairly involved, the docs are sparse, and turnaround times can be slow. 

From Houdini 17, SideFX introduced a python module called ​Viewer States, ​which wraps the              
functionality of the input hooks into a higher level library. This meant that prototyping viewport               
interaction tools became a lot faster since any changes didn’t require recompilation of the tooling and                
a restart of the application. For this reason, the tooling developed for this project was done using                 
these Python wrapped ​Viewer States​. 

Figures 6.5 and 6.6 show how these viewer states are exposed to the user. 

 

Figure 6.5: Viewport interaction to allow users to be able to quickly edit constraints 
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Figure 6.6: Viewport interaction with right click menu to allow users to be able to quickly edit constraints 

The red selector gizmo snaps to the path widget and allows the user to quickly and easily change the                   
position of the constraint. They can also edit the frame by using the mouse scrollwheel. Right click                 
functionality has also been implemented, so artists can specify which sections of animation should              
contain certain labelled sections of animation. 

The viewport interaction has been designed to allow artists to quickly and easily switch contexts so                
that they can seamlessly add different constraint types. This also allows for us to be extensible with                 
the interaction, as development progresses and more constraint types are introduced. 
 

6.3 CTAM full Houdini integration 

The full integration allows artists to place constraints in Houdini, and solve for animation. Figure 6.7                
below shows the result of a solve where four spatio-temporal constraints are placed in a scene. In                 
this example, there is a motion graph constructed from two animations, a walk and a run. The fact                  
that a short distance is covered between the second and third constraints means that the walk cycle                 
is a better fit, so should be selected by the solve. 
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Figure 6.7: Spatio-temporal constraints deforming the characters path 
 

Figure 6.8 shows the resultant animation where the green animation is sections of running, and               
orange is sections of walking. This result is achieved purely from the world position constraints               
determining that transitioning between these animations fit the curve better. There are no label              
constraints in this setup. 

 
Figure 6.8: Resulting animation from constraints 

 

For examples where we need to enforce a relational constraint between two animations, we have               
viewport controls that allow for that. Figure 6.9 below shows how this information is presented to the                 
user. Here, the purple dotted line shows that one animation is constrained spatially to the other at a                  
given frame. The blue line shows the distance and vector direction that the constraint must adhere                
to. 
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Figure 6.9: Relational spatial constraint between two animations at a given frame 

 

When this constraint is solved for, the resulting path of the top animation is deformed to satisfy the                  
constraint. Figures 6.10 and 6.11 show the resulting trajectory for the constrained animation, and the               
motion that is solved for, in this case, two running characters. 

 

Figure 6.10: Deformed trajectory from relational spatial constraint between two animations. 
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Figure 6.11: Solved animation from relational spatial constraint between two animations. 

When combinations of these constraints are layered together, it starts to become possible to produce               
some complex interaction between agents. Figure 6.12 shows an interaction between two agents             
where one character kicks the other, who then falls down. This is done by enforcing relational                
constraints, along with label constraints, and offsetting the timing to trigger the action at the same                
time. 

 

Figure 6.12: Interaction of animation produced from a combination of constraint types. 

 

In Figure 6.13, a number of agents are constrained using both spatial and label constraints to run and                  
then jump over boxes at a specified point in space. 
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Figure 6.13: Characters jumping over boxes based on an enforced label constraint. 
 

By adding more constraints, the complexity of the interaction can be extended whilst the interactive               
controls stay manageable. in Figure 6.14 we have one agent waiting on top of a structure, whilst                 
another walks past. At the specified time, the first agent jumps down off the structure and performs a                  
karate chop. The second agent dodges the attack, and runs off scared. 

 

Figure 6.14: A character jumping off a box and karate chopping another who runs off scared. 
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7 Conclusion 
Most of the animation synthesis techniques described in this deliverable are areas of research that               
have been described in academia. However, to our knowledge, this is the first time such tooling has                 
been developed in a production environment for the use in VFX. Whilst still in its early stages, we                  
believe that this technology has the power to transform the way that crowds are produced across the                 
industry. 

The goal is to prove that most, if not all, of the benefits of simulation for crowd production can be                    
rivaled with a system that also provides user control and a faster iteration cycle. Whilst there are                 
certainly still some limitations in the tooling at present, we hope that with artist feedback, the toolkit                 
can be enhanced, and make it production ready. In the coming months, we will start testing this                 
tooling on production shots to see if this optimism is founded. 

Following on from this initial testing phase, work to evaluate the effectiveness of this new tooling as a                  
replacement for current techniques will be detailed as part of work package 8, specifically WP8T3               
Prototype Evaluation​ and results will be detailed in deliverable D8.3. 
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10 Acronyms and abbreviations 
● API​ - Application Programming Interface 
● CTAM Solver​ - Combined Trajectory And Motion solver 
● DCC ​- Digital Content Creation 
● HDK ​- Houdini Development Kit 
● VFX​ - Visual Effects 
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