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1 EXECUTIVE SUMMARY 
This document provides details of the work done for deliverable D5.9 titled “Tools for synthesising               
animation without a rig” within work package 5 (WP5) of the SAUCE project. The work in this                 
document was carried out by two consortium partners, DNEG and TCD and focuses on two areas of                 
research, namly an animation adaptation tool for footstep cleanup and terrain adaptation, and a              
pre-roll animation generation tool. 

Section 2 provides some background of the document and how it relates to previous deliverables. 

Section 3 gives some background to the problems being tackled in this deliverable so that the reader                 
is clearly informed as to the reasoning why this work is being undertaken. 

Section 4 details the work done for the terrain adaptation and footstep cleanup in the context of                 
crowd simulation. 

Section 5 sets out the pre-roll generation problem, and then describes two alternative solutions to the                
problem. 

Sections 6, 7, 8, and 9 cover conclusions, references, web references and acronyms and              
abbreviations. 

 

2 BACKGROUND 

This deliverable continues the work done for work package 5 on asset transformation, focussing on               
animation. Whilst the implementations and problem spaces covered range for the different use cases,              
the three sections of this deliverable aim to address a common problem within the VFX industry, that                 
of animation reuse. 
 
Chapter 4 of this deliverable builds on the work done in deliverables D5.4 and D5.5 which focussed                 
on animation synthesis. Chapter 5 explores a new problem of pre-roll generation and investigates the               
feasibility of two different techniques. The first attempts to generate a skeleton from the mesh so                
that standard skeletal interpolation techniques can be applied. The second uses shape interpolation             
techniques to maintain properties of the mesh whilst interpolating between shapes. 

 

3 INTRODUCTION 
The animation department, in any VFX or feature animation studio, is fundamental to producing the               
realistic looking motion that breathes life into the characters on screen and allows cinemagoers to               
connect with the once static 3D geometry. They are able to do this work because of the work done by                    
the rigging department, who provide animation controls that allow the animator to move the              
character in a “believable” way. A standard rig comprises two key parts, the kinematic model, and the                 
deformation model. The kinematic model determines how the movement of the animation controls             
will change the position of the character’s skeleton. The deformation model determines how the mesh               
will be deformed based on this skeleton and other inputs. There are many techniques and tricks that                 
go into the creation of a high quality animation rig, but these are the two fundamental concepts. 

When creating a rig, riggers will balance quality and complexity to produce the best results for the job                  
at hand. As the number of modules in a rig increases, the animator is likely to get more realistic or                    
controllable results, but this will likely be at the cost of computational complexity and therefore               
speed. If a character is going to be very close to screen, perhaps a more complex rig is required. If                    
many characters need to be on screen at once, but they’re further from the screen, perhaps                
performance is the greater requirement so the rig complexity would be reduced. 

Whilst this goal of bringing characters to life is fundamental to the success of any project, an                 
animator's work also provides a starting point for many other departments in the 3D pipeline. Along                
with the mocap department, they produce keyframed skeletal animation that can be used by              
departments where having a full rig in scene no longer makes sense. This is true for crowd                 
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simulations where there can be a requirement to have thousands or perhaps even hundreds of               
thousands of characters in a scene. This kind of scale is not practical for complex rig setups. 

There are also situations where the representation of a rig is tied to a specific DCC, so there is no                    
good translation mechanism into another DCC where other work is to be done. At DNEG, this is the                  
case for CFX work done in SideFX Houdini™ because our rig representation is tied to a scene                 
representation in Autodesk’s Maya™. In this situation, the final animated character mesh is exported              
with no skeleton nor animation controls with which the animation can be adjusted. In the case of this                  
CFX work, pre-roll animation is often required to allow for a buffer for either a hair or cloth simulation                   
to settle in a reasonable state from an initial start position.  

These two examples highlight a bottleneck in the production pipeline that can require many days of                
iterations to get appropriate animation for the task at hand. The work done described in this                
deliverable attempts to allow artists to modify the animation they will use for their task without a                 
requirement to kick the work back to the animation department. The tooling described focuses on               
two areas: Terrain adaptation and footstep cleanup using IK techniques on pre-baked skeletal             
animation, and an automatic pre-roll generation tool to allow CFX artists to create this pre-roll               
themselves from a deforming mesh. The pre-roll work is split into two different implementations to               
evaluate different methodologies. The first method attempts to generate a skeleton from the             
geometry which artists can then pose using keyframes to generate their pre-roll, the second uses               
shape interpolation techniques to edit the mesh directly. 

The hope for these tools is to reduce the extra artist time requiring data from other departments, and                  
to speed up the turnaround of shots. 

 

3.1 Main objectives and goals 

● Produce a framework that allows crowd artists to ingest keyframed animation and generate             
new animation that adapts the character footsteps to an input terrain. 

● Create a tool that allows artists to ingest an animated mesh, and generate pre-roll animation               
for CFX work. 

 

3.2 Methodology 

For the work in Chapter 4 on footstep cleanup, the methodology was to extend the work done in                  
deliverables D5.4 and D5.5 where a C++ animation datatype was developed. This datatype allows us               
to edit the animation in an efficient and predictable way. Using this datatype, footstep detection               
techniques could be used to determine when a character had their feet on the ground, and using                 
inverse kinematics, the animation could be adapted to follow an input terrain. 
 
For the pre-roll tool, two approaches were attempted, as detailed in Chapter 5. The first, looked to                 
automatically generate a skeleton and skinning weights based on the input mesh. If this skeleton can                
be reliably generated, pre-roll animation could be created by simply posing the skeleton at particular               
keyframes, and using the skinning to generate appropriate mesh deformation. It would also add the               
potential that some of the other path editing tooling developed in D5.5 could be used to produce                 
richer and more complex pre-roll animations if ever required. This tooling was developed using              
Houdini, which is the target application for the majority of CFX at DNEG. 
 
The second approach to the pre-roll problem, also detailed in Chapter 6, attempts to use shape                
interpolation techniques to be able to interpolate between the mesh posed in different positions.              
Whilst linear vertex blending techniques will often produce scaling and skewing artifacts, by using              
laplacian minimisation techniques, these artifacts can be ameliorated. The tooling was developed in             
C++ as a standalone tool, and then wrapped in a Houdini node so that it could be used by CFX artists                     
at DNEG. 
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3.3 Convention 

In this deliverable will use ​italics​ for emphasis and ​monospace​ for code and pseudo code. 
 

3.4 Relation to the Self-Assessment Plan (D1.2) 

As this work package was devised and added to the project when it was underway, there is no                  
mention of this work package or its deliverable in the self assessment plan. However, since it is                 
similar in nature to the work described in WP5T2 and WP5T3, it feels appropriate that it should have                  
a similar testing plan, namely to devise some standard tests, and evaluate the speed of turnaround of                 
shots when using the tooling and when using older techniques. This evaluation will take place in                
months M25-36, as part of work packet 8 in deliverable D8.3. 
 

4 Footstep cleanup and end effector handling for crowds 

At DNEG, for reasons of efficiency, crowd artists use keyframed skeletal animations to drive the               
agents. This animation data generally comes from mo-cap sessions. As crowds require a large              
number of characters potentially all following their own unique paths and performing different             
behaviours, it is not feasible for animators to author bespoke animations for every character. Even               
crowds with a low number of agents where this may be possible, the animations will often need to be                   
edited when the environment is updated, the layout of the crowd is altered, or when someone isn’t                 
satisfied with the animation of particular agents. Going back to an animator for every edit is often a                  
very slow process, so a crowd artist needs to be able to edit animation within their scene. As the rigs                    
animators use to manipulate a skeleton are often very complex to process and dependant on a                
particular DCC, it’s not possible to use them in a live crowd scene. Instead, animations are baked as                  
transforms for joints for each frame of animation, which can then be imported into Houdini for crowd                 
work to begin. With baked skeleton data we can fulfill many crowd requirements by looping,               
trimming, blending and layering animations, which are all relatively simple operations to perform and              
can rely on the joint transforms of the source data when producing any new poses. 
 
Situations where a joint needs to be transformed a large distance, such as with terrain adaptation,                
require an Inverse Kinematics (IK) system in order to calculate realistic transforms for all the joints in                 
the chain of the transformed joint.  
 

4.1 Terrain Adaptation 

Crowd agents may need to walk over bumpy, sloped and continuously changing terrain that are               
subject to change throughout a production. We cannot capture mo-cap or author animations for any               
variation in an environment and so we must adapt our existing animations to be able to realistically                 
traverse their environment. 
 
To achieve this we project the root of an animation to smoothly follow the height of the ground that                   
the agent is traversing. To maintain appropriate foot positions, we derive transforms for the ankle               
joints that keep the foot in contact with the ground when it is not lifted, and preserve the roll of the                     
foot as it steps on the ground. 
 
As well as adapting to uneven terrain, this can be used to walk up and down stairs. Stairs are                   
generally a more difficult geometry for which to produce a realistic pose due to the discrete change in                  
the height of each step. Additionally, this technique is useful to eliminate foot sliding by locking the                 
positions of the foot joints while they are in contact with the ground. 
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Figure 4.1 Flat walk animation traversing stairs. 

 

4.1.1 Projecting to the Ground and Smoothing Root Projection 

The first step in the terrain adaptation process is to project the root joint transform of the animation                  
onto the ground. We also use ground projection in detecting footsteps and calculating the target               
ankle transforms. 
 
From any joint position we find a projected point on the ground by shooting a ray from that point to                    
find an intersection with the ground geometry. The direction of the ray is downwards (-y) by default,                 
but this is editable if required. 

 
Figure 4.2 Intersection of a ray, shot from a joint position, with the ground geometry. 

 
For continuously smooth terrain, this projected point can be used as the root joint position, keeping                
the animation at a consistent height above the ground. However, for stairs or bumpy terrain we need                 
to smooth out the projected points over the neighbouring frames to avoid a discontinuous change in                
height of the characters animation. Using walking upstairs as an example, for frame n if the projected                 
position on frame n+1 intersects with the next step, we do not want the animation to suddenly jump                  
up by the height of the step. We avoid this by calculating the projected root position for each frame,                   
and applying a damped spring filter to each [Clavet 2016]. 
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Figure 4.3 Spring damped root projection over stairs. 

 

4.1.2 Detecting Footsteps 

In order to clean up footsteps we must first detect when the foot joints are in contact with the                   
ground. The foot of the DNEG archetype biped crowd skeleton generally comprises three joints: the               
heel and ball joints, both parented to the ankle, and a toe joint parented to the ball. To detect the                    
foot down points, we analyse these joints at every frame, and tag them if it is found to be down. This                     
provides a frame range for each joint of when it is in contact with the ground. 
 
A simple metric is used to automatically detect when the joints are down, combining joint speed and                 
height [​Pražák 2012]. For each frame n of an animation the speed and height of the animation are                  
derived as follows ​— 
 

            ​Figure 4.4speed    n = √ (jointPosition  jointPosition ) n+1 −  n−1
2  

 
 ​            Figure 4.5eight   jointPosition.y  groundProjection.y h n =  n −  n  

  
 
The ground projection is found by firing a ray from the joint to the ground along a user defined up                    
vector. 
 
If both of these values fall below user defined thresholds for speed and height for a given joint, it is                    
determined to be in contact with the ground. In order to smooth out the results and eliminate any                  
anomalies, a median filter is run over the result of each joint with their neighbouring frames, and the                  
joint is tagged for any frames that return true. 
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Figure 4.6 Footsteps - Green circles show when the heel is down, red are when it lifts up. 

 
This technique can miss foot downs in noisy or irregular animations so a mechanism to manually tag                 
foot downs is also provided. These tags are treated as constraints that keep a joint from moving                 
while it is in contact with the ground. 
 

4.1.3 Ankle Targets 

Due to the way that ankle joints pivot when a locomotive animation is playing, it is necessary to treat                   
them as a special case. For each frame of the animation, and for both ankles, a target transform                  
must be found which ensures that the foot is above the ground when no joints are constrained. When                  
joints are tagged as down, this transform must keep the foot from sliding, but allow for rotation as                  
the foot rolls. 
 

4.1.3.1 Foot Step Phases 

Foot Up 
When there are no foot down constraints, the foot is maintained at at least a minimum distance                 
above the ground to ensure that the foot doesn’t penetrate the terrain. This is done by projecting                 
each foot joint position to the ground and then translating the ankle joint upwards by the distance                 
from the joint to the ground. 
 
Into Foot Down 
When no joints are constrained, the animation is analysed to find the first upcoming constrained               
frame. If the constrained frame is within a user defined number of frames, the target ankle transform                 
is found at the constrained frame. The joint transformations are then linearly interpolated from the               
current ankle target to the constrained target. As the ankle target at the constrained frame has been                 
projected to the ground, this interpolation is necessary to smooth out any discontinuous change in               
the ankle transforms [Kovar et al. 2002]. 
 
Foot Down 
To handle frames where there are constraints present, the solver needs information about which              
joints are constrained and at which frame did the constraint start. The first joint to contact the                 
ground acts as the start point for calculating the current target transform. This start target transform                
is found by translating the ankle transform at the start frame by the projection distance to the ground                  
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from the first constrained joint position, thus placing the joint on the ground. Subsequent frames take                
the start transform and rotate it around the projected joint position, until the joint lifts off the ground.  
 
The next constrained joint can then be used as the new pivot point for the ankle. The rotation                  
amount is determined by forming a plane with the joint positions of the foot, and finding the rotation                  
from the start transform plane and the current plane. If a constrained joint is not touching the                 
ground, its position is projected to the ground and an interpolated position is used towards the                
projection. 
 

 
Figure 4.7 Ankle Target Transform. 

 
Out of Foot Down 
As with the ‘into’ phase of the foot step, a linear blend is performed from the last constrained ankle                   
target to the current target ankle transform over a user defined blend duration [Kovar et al. 2002]. 
 

4.1.4 Hip/Pelvis Target 

In the DNEG crowd skeleton hierarchy a single joint, named “hip” is used as a root joint for the whole                    
skeleton. Once the ankle targets have been determined for each leg the hip joint needs to be                 
evaluated to see whether it needs to be translated. This is required if any of the targets are a greater                    
distance away than the length of that leg.  
 
The length of each leg is determined as the sum of the distances from each joint to its child, until the                     
ankle joint is reached, starting from the root of that leg. These length results can be used as the                   
radius of a sphere from which the target ankle position is centred. The intersection of these spheres                 
provides positions where the hip is within range of all ankle targets. If the hip falls outside an ankle                   
sphere its position is projected to the intersection in order to find the minimal translation needed to                 
move the hip within range [Kovar et al. 2002]. 
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Figure 4.8 Hip/Pelvis Target. 

 

4.1.5 Stretching Leg Bone 

In order to avoid knee-popping and to allow for situations where there are large distances from the                 
ankle targets to the hip [Kovar et al. 2002], the user has access to exposed parameters which allow                  
leg lengthening and shortening. These parameters are utilised when calculating the leg lengths for              
the previous step. The maximum and minimum length of the legs are added as constraints for the IK                  
solver, which handles the lengthening and shortening of the bones. 
 

4.1.6 Applying IK 

At this stage of the process the animation root has been projected to the ground, the target                 
transforms for the ankles have been found and the hip joint has been translated to be within reach of                   
the targets. The final process is to move the ankles to their desired targets. To do this, an IK solver is                     
used in order to create a realistic pose given the new transforms of the ankles. Every joint in the                   
chain of an ankle needs a new transform that will be within the constraints of a skeletal hierarchy. 
 
The IK solve is the final step in the terrain adaptation, outputting a new pose with feet correctly                  
placed on the terrain, whilst the body maintains a realistic pose that should closely resemble the input                 
source pose. 
 

4.2 IK 

Manipulating skeletons and controlling the configuration of each joint is a well covered topic in               
animation, games and robotics. Inverse Kinematics allows us to move an end effector joint, and               
calculate consistent transforms for each joint in the chain of the end effector. The IK solve must be                  
fast and produce smooth and realistic poses. Many techniques exist for performing IK, some of the                
more widely used in games and animation technology being CCD (Cyclic Coordinate Descent), the              
Jacobian Method, and FABRIK (Forward and Backward Reaching Inverse Kinematics) which was the             
chosen method implemented for our system. 
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4.2.1 FABRIK System 

FABRIK is an iterative solution, fast enough to be used in real-time applications, relatively simple to                
implement, and can be used for full-body IK, where multiple end effectors can have a combined                
effect on shared parent joints. 
 
With each iteration of the FABRIK algorithm the end effector joint should move closer to its desired                 
target transform. When all end effectors are within a user-defined distance tolerance to their target,               
the algorithm is halted as a solution has been found.  
 

4.2.1.1 Forwards and Backwards Solve 

The algorithm gets its name by starting at the end effector, applying translations to each parent joint                 
until reaching a root joint, then applying a second pass from the root to the end effector joints                  
[Aristidou and Lasenby 2011].  
 
Forwards 
First the end effector joint j​n​‘s transform is set to the input target. Then, a position for the parent                   
joint j​n-1 ​is found along the vector j​n​’ - j​n-1 at a distance equal to the source distance, from j​n to its                      
parent. This is repeated until the root joint is found. 
 

 

 
Figure 4.9 FABRIK forwards step. 

 
Backwards 
The now translated root joint is moved back to its source position and we continue to move each                  
child joint along the vector from child to parent to maintain their source distance until the end                 
effectors are reached. 
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Figure 4.10 FABRIK backwards step. 

 
A maximum number of iterations is also defined as an additional exit condition if no solution has been                  
found. 
 

4.2.1.2 Multiple End Effectors 

During the forward step, if a joint is reached that has more than one child joint, which we call a                    
sub-base joint, every proposed transform of that joint is first found for each of the child joint chains it                   
parents. An average of these transforms is then used as this sub-base joint’s transform and the                
algorithm continues until reaching either another sub-base joint or the root joint of the skeleton               
[Aristidou and Lasenby 2011]. 
 

4.2.2 Constraints 

The rotations of joints must be constrained in order to produce a realistic pose. Without them, joints                 
may be bent the wrong way or twist beyond what is possible in a body. A joint has 3 degrees of                     
freedom, which may be decomposed into two rotations, a swing and twist. The twist describes the                
rotation along the direction vector, i.e, where the joint is pointing. In our model, for a joint with only                   
one child, the swing gives us the direction of the bone connecting the joint to its child. As the rotation                    
can be decomposed into swing and twist components, each rotation is constrained separately             
[Aristidou and Lasenby 2011], where the swing of a joint is dependent on the result of the twist                  
constraint. 
 
The FABRIK algorithm provides the target positions of joints, but the joint rotations must also be                
calculated in order to correctly apply constraints. When a child joint is moved the rotation can be                 
found using the vector from the parent to the previous child position, to the vector from the parent to                   
the target child position. This rotation is then applied to the parent. In cases where a parent has                  
more than one child, the average target position of all the children is found and the joint is rotated                   
towards that point. 
 
Although a skeleton may contain a number of different joint types, our implementation simply treats               
every joint as a ball and socket joint. Hinge joints such as the knee or elbow are treated no differently                    
in the solver, but are constrained to only allow movement along a single plane. 
 

4.2.2.1 Constraint Types 

Three constraint types are used on each joint, applied at every step of the algorithm, on the forwards                  
and backwards phase [Aristidou and Lasenby 2011]. 
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Twist 
The twist constraint for a joint is defined as two angles representing the minimum and maximum                
twist angle in which a joint rotation can lie in relation to its parent. When determining the twist                  
rotation of a child joint in relation to its parent we first find its local rotation and decompose to find                    
the twist along the axis we know points down the bone. The twist quaternion is then clamped to stay                   
within the constraint angle range [van den Bergen 2016]. The difference in the current twist and the                 
clamped twist produces the quaternion ​R needed to rotate the child joint in order to stay within its                  
limits. 
 
When carrying out the forward step of the algorithm the parent must be rotated so that the child                  
adheres to the constraints, and on the backwards step the child is rotated. 
 
Swing 
The swing constraint of a joint is represented with 4 angles which are used to form 4 radii of an                    
irregular ellipse. Given a target position for a child joint, we project this point onto the ellipse to                  
ensure it stays within the limits of the constraint joint. The normal of the ellipse is the direction vector                   
of the previous bone, and the distance from the constraint joint is the projection of the target child                  
position onto the normal. Given the distance from the constraint joint, the ellipse radii can then be                 
calculated. The twist/orientation of the ellipse is the same as that of the constraint joint. 
 

 
Figure 4.11 Swing Constraint - 4 angles of constraint form 4 radii for each axis of the ellipse. 

 
By finding the position of the target local to the ellipse we can find the quadrant the target point lies                    
in, giving us the two radii with which we can form a regular ellipse. By finding the closest point to                    
that regular ellipse we have the constrained position of the target [Aristidou and Lasenby 2011]. 
 
Bone length 
As mentioned previously in section 4.1.5 we allow for bone length stretching and squashing. This               
constraint is represented as a minimum and maximum scale range for a distance that a joint is                 
allowed to be from its parent. This is applied during the FABRIK algorithm when finding new target                 
positions for joints. The min/max bone lengths are calculated as the rest bone length scaled by the                 
min/max values. The distance from the target to its parent is clamped to be within this constrained                 
range. 
 

4.2.3 Resolving Deadlock 

An issue with the FABRIK algorithm is that deadlock can occur where the end effector joint of a                  
constrained chain is outside the acceptable distance for a solution, and does not get any closer with                 
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subsequent iterations, even when a potential solution exists. Constraints are not aware of any other               
constraints in the chain which limits the potential solutions the solver can produce [Aristidou et al.                
2016]. 
 
When a deadlock situation occurs, the solve restarts from the first iteration, but with a small rotation                 
of the chain applied towards the target. This step is repeated until either a solution is found or we                   
have rotated 360​o​ back to the start point. 
 
Resolving deadlock can harm the performance of the solver due to the number of times the algorithm                 
may need to be repeated. Because of this, the user is given control over the amount of rotation to                   
perform after deadlock is found. A larger rotation can resolve deadlock faster at the risk of larger                 
delta of joint positions from one frame to the next. 
 
 

5 Pre-roll generation from deforming geometries 

It is sometimes desirable to edit the animation of a deforming character geometry, either to fix                
artifacts or alter some aspect of the animation. Whilst it would technically be possible to edit each                 
vertex of a polygon mesh individually, such a procedure would be incredibly cumbersome and              
time-consuming, and is therefore impractical for anything other than the simplest of edits. As              
described in previous chapters, the standard approach is to use a set of hierarchical joints to                
influence the motion of larger and more complex geometries using some skinning algorithm. The              
process of virtual bone placement and setting up the controlling relation between the bones and the                
polygon mesh is normally handled during the rig creation stage. 
 
In a typical production environment, a rigger will add a skeleton and animation controls for each                
animated character, balancing high-fidelity deformation and performance. Whilst rigging does not           
necessarily need to be tied to specific functionality of a DCC, practically, making a DCC agnostic                
rigging system is time consuming and technically difficult, so many studios have built their rigging               
systems using DCC specific functionality. This is true of the DNEG character pipeline which uses Maya                
as its standard application for character animation. Cases where there are multiple studios working on               
a single film, and assets need to be shared, having a single rig representation that all companies can                  
interpret is impractical, since each company will have developed their rigging system separately. As a               
result, when an animation is handed over from one company to another, it is usually cached as                 
geometry and the rig is discarded. 
 

5.1 The Pre-roll Problem 

When bidding for work on a VFX show, a studio will split the bid into a number of shots, and the                     
tasks required for each shot, where a shot is defined as a section between camera cuts. A sequence                  
is normally defined as a series of shots that take place in the same environment or a succession of                   
related actions. Whilst it might seem logical to animate characters as a continuous animation for the                
entire sequence, practically this rarely works as different camera positions might highlight animation             
artifacts that are obscured from another camera angle. As a result, in the vast majority of cases,                 
animation is done at a per shot level. 
 
This per-shot methodology often introduces an issue later down the pipeline since animation clips              
created for a shot will be bound by the first and last frame of that shot. This means that they contain                     
no information of what occurred before the first frame. The event preceding shot start is commonly                
referred to as the ​pre-roll ​(Figure 5.1). The pre-roll is crucial to the realism and continuity of certain                  
character effects such as cloth and hair simulation which fall to the creature effects department               
(CFX). For this reason, for shots where CFX work is required, animators are generally asked to add in                  
a few frames of pre-roll animation. This often works, however, different CFX tasks need different               
types and lengths of pre-roll, and the back and forth between the animation and CFX departments in                 
defining and producing this pre-roll animation can be time-consuming.  
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Figure 5.1 Given animation frames i to j, the N-frame pre-roll is the animation frame i-N to frame i-1. 

 
 
The focus of this work is to allow the CFX artists to generate the pre-roll animation rather than relying                   
on the animation department to provide it. There are two methodologies described in this chapter,               
the first, detailed in section 5.2 focuses on skeleton generation from the animated geometry. The               
idea being that if a skeleton can reliably be generated from the geometry, that skeleton can simply be                  
posed and blended, driving the geometry to move in an expected way in a similar approach to that of                   
the footstep cleanup mechanisms described in the previous chapter. The second approach uses shape              
interpolation techniques to move the vertex positions of the mesh directly, whilst attempting to              
ameliorate artifacts introduced with simple vertex blending. 
 

5.2 Skeleton generation for pre-roll 

 

 
Figure 5.2 A skeleton from mesh contraction by Au et al. [2008]. 

 
Since manual rig creation can be laborious, there have been many different techniques attempting to               
automate the skeletal construction, such as thinning the geometry along the thickness until it              
converges to a line structure [Au et al. 2008] (Figure 5.2). Each method has pros and cons depending                  
on the constraints of the problem. For our use case, we made the assumption that the tool would be                   
predominantly deployed in scenes comprising realistic human characters, so we could utilise the             
conventional proportion in anatomy drawings and character designs to approximate the bone            
dimensions and locations (Figure 5.3, left). To maximize the usability of our tool, we based our                
skeleton structure on the Carnegie Mellon University’s (CMU) standard widely used in motion-capture             
production and research (Figure 5.3, right). This skeleton is cross-compatible with the one used in               
crowd characters of Deliverable 6.8. The tool was created and used in the Houdini 18.0 software                
package. Figure 5.4 shows our test results of our skeleton generator which is fully automated. 
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Figure 5.3 Left: conventional body proportions used in anatomy drawings & character designs [Fairbanks 2011].  

Right: CMU’s skeleton standard implemented in a Houdini crowd character. 
 
 

 
Figure 5.4 The results of our skeleton generators from left to right, DNEG’s generic man, 

Houdini’s crowd character, and Houdini’s test male character (Tommy). 
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5.2.1 The skeletal construction process for a character in a rest pose 

 

 
Figure 5.5 - Skeletal construction process of the right arm. 

 
 

1. The process starts with estimating the positions of the bone points based on the human               
anatomy dimension. Note that the CMU’s skeleton was simplified by omitting the finger joints. 

2. Some bone points such as those along the head, neck and spine were placed inside the                
volume of the character, while others, such as shoulders, elbows and knees were offsetted by               
a small distance as shown in Figure 5.5. The bones with offsets were then projected to the                 
character mesh either along a predefined direction or the closest distance. For bone locations              
that vary greatly in a rest pose such as the arms and lower legs, offsetting and projecting                 
yield more accurate results. 

3. Using the direction of the surface normal of the nearby polygons, the bones were moved               
inside the volume of the character. After that, at each bone point, a ring is projected outward                 
in the direction orthogonal to the bone orientation to form a cross section of the character                
volume. The bone points were then moved to the centroids of the corresponding cross              
sections ensuring the skeleton was center-aligned throughout the character mesh.  

 
As stated before, this approach only works with human anatomy in a rest pose and can be performed 
in a fully automated manner. We have tested the skeleton generator on three different human 
meshes and the results were robust as shown in Figure 5.4.  

5.2.2 The skeletal construction process for a character in other poses 

At the end of the skeletal construction of a rest pose, the cross section information is embedded into 
the rest mesh, and can be transferred to corresponding polygons on a new mesh. To generate the 
bone of the new mesh, we simply re-calculate the centroids of the transferred cross sections and 
connect them (Figure 5.6). 
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Figure 5.6 - The embedded skeletal construction information is transferred from the rest pose 

to a new pose and use to create the new skeleton. 
 

5.2.3 The Pre-roll Creation with Auto-rig Workflow 

The skeleton generator can be used to create a CMU’s bone hierarchy of any given realistic human                 
character. The resulting skeleton can then be used to deform the mesh by using the ​biharmonic bone                 
deformation tool (the bones capture and deform the nearby polygons based on the mesh structure               
and proximity). This is a native tool available in the Houdini software. The combination of our                
skeleton generator and Houdini’s existing mesh deformers establishes a simple but capable auto-rig             
system. 
 
Without a rig, a simple way to create a pre-roll animation for a character would be to directly                  
interpolate the mesh from a starting pose to the pose at the first frame. However, a naive linear                  
mesh interpolation can create artifacts and undesirable deformations of the inbetweens. With our             
auto-rig system, artists are equipped with simple high level controls that can be used to resolve the                 
issues quickly. 
 
We have devised a toolset specifically for the pre-roll animation creation consisting of: 
 

1. Skeleton Rest​ - generates a skeleton from a character mesh in a rest pose. 
 

2. Skeleton Pose​ - generates a skeleton from a character mesh in any pose. 
 

3. Pose Interpolate - generates key poses by interpolating between two given skeletons.            
Artists can specify the number of poses, duration (the number of frames), as well as visualize                
the result. These results are shown in Figure 5.7, top. 
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Figure 5.7 - Top: the visualization of “Pose Interpolate” tool interpolating the two poses from Figure 5.6 

with 6 poses and the duration of 48 frames. Bottom: The changes made by the “Pose Replace” and 
“Pose Fix” tools. 

 
 

4. Pose Replace ​- replaces a specific pose with another one that is generated from a different                
character mesh, shown in Figure 5.7, bottom. 

 
5. Pose Fix and ​Pose Fix Merge ​- manually isolate, edit and merge back a specific pose.                

(Figure 5.7, bottom). 
 

6. Mesh Deform ​- interpolates the key poses to create per-frame skeletons and use them to               
deform the character mesh for the pre-roll. 

 
Figures 5.8 and 5.9 show the overview of the pre-roll workflow with the skeletal construction and the                 
rest of the toolset, and its implementation inside Houdini software.  
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Figure 5.8 - The skeletal construction and the pre-roll workflow. 
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Figure 5.9 - The network tree of our toolset and pre-roll workflow implemented inside Houdini DCC software. 
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5.3 Shape interpolation based pre-roll tool 

In this section, we consider the use of example-based deformation methods to address the pre-roll               
problem. For our purposes, "example-based" methods are those where a deformed shape is created              
by interpolating between given example shapes i.e. the deformed shape is a function of the example                
shapes. For clarity, we distinguish these from "handle-based" methods where a deformed shape is              
created by manipulating additional control objects (e.g. bones in a rig). In this case, the deformed                
shape is a function of the handles and a single neutral shape. 
 

5.3.1 Deformation quality 

With example-based deformation methods, the quality of deformation is largely dependent on the             
chosen interpolation scheme. Blendshape deformation, for example, is a particularly ubiquitous           
example-based deformation method whose popularity is largely due the simplicity of its interpolation             
scheme i.e. the deformed shape is a linear combination of example shapes.  
 
While its simplicity ensures low computational overhead, blendshape deformation results in noticeable            
loss of surface area and volume when used to approximate rotational deformation (figure 5.10). In               
practice, these artefacts are often alleviated by introducing additional "corrective" example shapes            
which effectively provide a finer discretization of the desired interpolation path. This comes at a               
considerable cost, however, as modelling large quantities of corrective shapes is a time-consuming             
task that is typically carried out by skilled artists. 
 

 
Figure 5.10 - Blendshape deformation results in loss of surface area at intermediate frames. Colour indicates 

relative deviation from linearly interpolated surface area. Example shapes are outlined. 
 
Blendshape deformation offers a tradeoff between speed of evaluation and deformation quality that is              
widely considered to be acceptable in contexts where interactivity is critical and the performance              
bottleneck is deformation (e.g. animation). 
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This tradeoff is less acceptable in the context of the pre-roll problem however. Here, deformation               
quality is critical as simulated character effects (hair, cloth, etc.) are expected to physically interact               
with the deforming shape such that their motion appears natural on the first frame of animation. Any                 
non-negligible loss of surface area and/or volume during deformation is, therefore, likely to result in               
unstable dynamics. Furthermore, correcting these deformation artefacts by creating more example           
shapes is no longer feasible here as doing so introduces an expensive feedback loop between CFX                
and animation departments. 
 
Simulation of CFX elements is the clear performance bottleneck in the pre-roll context - the cost of                 
which precludes interactivity in most real-world examples. Compared with animation contexts, this            
relaxes constraints on evaluation time for deformation, allowing us to consider more expensive             
interpolation schemes that offer better deformation quality. 
 

5.3.2 Existing work 

Existing example-based deformation methods can be broadly categorized into two types based on the              
nature of their interpolation schemes [Von-Tycowicz et al. 2015]. This section aims to highlight the               
advantages and disadvantages of each with respect to the pre-roll problem. 
 
Both types follow the same general approach to the problem i.e. rather than interpolating vertex               
coordinates of example shapes directly (as per blendshape deformation), they interpolate other            
geometric quantities and then solve for the embedding that satisfies them which yields the              
interpolated shape. Where the two differ is in the types of quantities they interpolate which has a                 
profound impact on the complexity of the solve step. 
 

5.3.2.1 Intrinsic methods 

Intrinsic methods are those which interpolate ​intrinsic quantities on the example shapes e.g. edge              
lengths and dihedral angles. While these methods are often quite robust in their ability to capture                
complex non-linear deformation, recovering the embedding of the interpolated shape from its intrinsic             
representation is typically a large non-convex optimization problem [Von-Tycowicz et al. 2015] which             
presents several problems in the pre-roll context. 
 
Firstly, non-convexity implies the existence of multiple local minima which may cause discontinuities             
in the animation as the solution (i.e. the interpolated shape) jumps from one local minimum to                
another between frames. Secondly, numerical methods for solving non-convex optimization problems           
are prohibitively expensive for our purposes. 
 

5.3.2.2 Variational methods 

Variational methods are those which interpolate differential quantities on the example shapes. In             
particular, these methods focus on differential quantities that can be evaluated via linear operators              
(e.g. the gradient or the Laplacian) as they allow the embedding to be recovered by solving a convex                  
optimization problem with a quadratic positive semi-definite objective [Botsch et al. 2007]. In             
practice, minimizing such an objective amounts to solving a sparse linear system - a procedure for                
which mature efficient solvers are readily available. This convexity is particularly important in the              
context of the pre-roll problem as it implies the existence of a single global minimum, guaranteeing                
continuity of the animation between frames. 
 
While the use of linear differential operators greatly simplifies the solve step, it does so at the cost of                   
deformation quality. In general, these methods struggle to capture complex non-linear deformation,            
making them unsuitable for certain applications [Botsch et al. 2007]. Despite this, variational methods              
offer a significantly less dramatic speed-quality tradeoff than blendshape deformation, making them            
worth further consideration in the context of pre-roll. 
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5.3.3 Poisson shape interpolation 

Poisson shape interpolation [Xu et al. 2006] is a variational method used to interpolate between a                
source and target shape in a way that captures rotational deformation. As a byproduct, it also                
approximately preserves surface area and volume during interpolation making it particularly well            
suited to the pre-roll problem (figure 5.11). 
 

 

 
Figure 5.11 - Poisson shape interpolation roughly preserves surface area at intermediate frames. Color indicates 

relative deviation from linearly interpolated surface area. Example shapes are outlined.  
 
The method is able to capture rotational deformation by performing a polar decomposition of the               
deformation for each face, yielding its rigid (rotational) and non-rigid (scale/shear) components.            
These are interpolated separately for each pair of corresponding faces using different interpolation             
schemes (i.e. spherical linear for rigid and linear for non-rigid) and then recombined to get the                
interpolated deformation (figure 5.12). This avoids the familiar "candy-wrapper" effect (i.e. volume            
loss) caused by linearly interpolating deformations directly. 
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Figure 5.12 - Rigid ( ) and non-rigid components ( ) of deformation are interpolated separately for each pairRt St  

of corresponding triangles. 
 
Given the interpolated deformation ( ) for each pair of corresponding faces, the rest of the method    Dt             
proceeds as follows: 
 

● Evaluate the gradient of the vertex coordinates within each deformed face 
 

 
 

● Solve a Poisson equation to get the vertex coordinates of the interpolated embedding ( )x′  
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Figure 5.13 - Deformation of corresponding faces in the source and target shapes are interpolated 

independently. A sparse Poisson problem is then solved to recover the vertex coordinates of the interpolated 
shape. 

 

5.3.3.1 Issues 

Poisson shape interpolation tends to fail when the given source and target shapes have large               
rotational distances between corresponding faces, resulting in inconsistent interpolation paths (figure           
5.14). This is a natural consequence of interpolating the rotation of each face independently since               
there is nothing preventing adjacent faces from taking diverging paths through . This is more          O  S 3     
likely to occur as the rotational distance between source and target faces approaches .π  
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Figure 5.14 - Large rotations between corresponding faces in example shapes causes inconsistent interpolation 
paths. Color indicates relative deviation from linearly interpolated surface area. Example shapes are outlined. 

 

5.3.4 Implementation 

The limitations of Poisson shape interpolation discussed above preclude direct application in the             
context of the pre-roll problem as large rotations between the neutral shape and the first frame of                 
animation are entirely likely. To address this fundamental issue, we implement a modified version of               
Poisson shape interpolation that provides users with a means of resolving interpolation artefacts if              
and when they arise. These modifications also provide some additional utility for addressing other              
challenges related to pre-roll generation. 

 

5.3.4.1 Pre-transformation 

The most direct way of resolving inconsistent interpolation paths caused by large rotations is by               
simply pre-transforming the source shape such that it better aligns with the target. Finding the               
optimal transformation (i.e. the one that minimizes the rotations between all pairs of corresponding              
faces) is non-trivial however it can be reasonably well approximated by solving a standard orthogonal               
Procrustes problem using covariance matrices of the source and target shapes. 
 
Our implementation also allows for this transformation to be manually specified which was found to               
be more intuitive in cases where interpolation artefacts were quite local and therefore easy to correct                
interactively. While we found that pre-transformation resolved the majority of problematic test cases             
from production, it is not a general solution as the best alignment may still result in large rotations                  
between corresponding faces. 
 

5.3.4.2 Intermediate shapes 

A more robust approach to resolving inconsistent interpolation paths is through the use of              
intermediate example shapes. These allow the user to better define the interpolation path taken from               
source to target, providing an intuitive and directable means of fixing deformation artefacts as they               
become apparent (figure 5.15).  
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Unlike with blendshape deformation, the number of intermediate shapes required here is guaranteed             
to be small, eliminating much of the modelling burden typically associated with corrective approaches.              
This guarantee is simply due to the fact that the distance between any two rotations in is at most                O  S 3    

. By introducing an intermediate example shape, the rotational distance between correspondingπ             
faces is potentially halved, at which point paths through can no longer diverge. This means that         O  S 3        
in all but the most pathological cases, a single intermediate shape is enough to correct any                
inconsistencies. 
 
Beyond providing a means of resolving deformation artefacts, intermediate shapes also allow users to              
avoid self-intersection during interpolation. This is particularly important in the context of pre-roll as              
self-intersection will typically lead to numerical instability in simulated CFX elements. 
 

 
Figure 5.15 - Adding a single intermediate example shape corrects the interpolation path. Color indicates relative 

deviation from linearly interpolated surface area. Example shapes are outlined. 
 

6 Conclusion 
Whilst the use cases and technological implementations described in this deliverable are varied, the              
common theme is one of animation re-use. A large amount of time is spent in the creation of bespoke                   
animations for multiple situations, and yet more time is spent moving backwards and forwards              
between departments when requirements are unclear. The work done in chapters 4 and 5 helps to                
move the job of custom asset creation and adaptation into the department that will end up using it                  
which adds clarity to the requirements. 

For footstep cleanup and terrain adaptation, the IK system used (FABRIK) produced realistic poses at               
runtime speeds, suitable for use on many crowd agents. The constraint rig used with the IK system is                  
not as complex as the rigs used to author animations and therefore not suitable for providing                
high-quality hero animations, but for crowds the results are promising. An advantage of using the               
FABRIK algorithm is its implementation of full-body IK, which may be useful in the future in areas                 
beyond terrain adaptation. Retargeting animation for different skeletons, interaction with other           
agents, environments or props and applying physical reactions to agents are all achievable with this               
IK system. 
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The results of the terrain adaptation are convincing while leaving areas to improve upon. Artists will                
be able to re-use many locomotion animations to traverse quite extreme terrain including stairs and               
maintain control over the output animation. Closer scrutiny of the adapted animation does show an               
unrealistic shifting of weight, especially over large changes in terrain height. A future improvement              
would be to add counter-balancing, where the IK system may be used to keep the centre of mass of                   
the character over its support points (feet in contact with the ground). This would give us poses                 
where the hips are shifted forward over a leading foot as the character steps up onto higher terrain,                  
and when traversing down sloped terrain the character will lean back. 

The two methods for generating pre-roll animation presented in chapter 5 provide complimentary             
means of circumventing a time-consuming feedback loop that currently exists between animation and             
CFX departments. Both of the proposed workflows shift the authoring of pre-roll sequences from              
animation to CFX, allowing CFX artists to create sequences that are better tailored to specific               
simulation requirements which animators may not typically be aware of. 

The auto skeleton generator has been tested with three human character meshes, DNEG’s generic              
man, Houdini’s crowd character and Houdini’s test male character (Tommy), with varying topology             
complexity and rest poses, which yielded robust results (Figure 5.4). Although the current tool cannot               
handle a T-pose and other skeleton standards, such as the one used at DNEG, generalisation should                
be achievable with a few minor tweaks. One avenue of future research would be to evaluate whether                 
the tool can be improved to reliably construct skeletons of stylized bipeds and quadrupeds with               
machine learning and enough training data. In terms of mesh deformation, our method does not take                
into account the bone rotations and undesirable twists may occur in the interpolated meshes. To               
address these issues, aim directions for the elbows and knees, as well as angle limiters can be added                  
to the workflow in the future. 

Generating pre-roll animation via shape interpolation worked reasonably well in most production test             
cases. For those where it failed due to large rotations between corresponding faces in source and                
target shapes, the interpolation path could usually be corrected by simply pre-transforming the source              
shape to better align with the target. For the few cases that could not be resolved in this way, the                    
interpolation path was corrected by adding a single intermediate example shape. The creation of              
intermediate shapes remains a challenge that we intend to address in future work. Given that the                
proposed workflow is intended to be carried out by CFX artists rather than animators, providing               
accessible tooling for doing so will be essential for use in production. 

 

7 References 
 
Alexa, Marc, Daniel Cohen-Or, and David Levin. "As-rigid-as-possible shape interpolation." 
Proceedings of the 27th annual conference on Computer graphics and interactive techniques​. 2000. 
 
Aristidou, Andreas, and Joan Lasenby. "FABRIK: A fast, iterative solver for the Inverse Kinematics 
problem." ​Graphical Models​ 73.5 (2011): 243-260. 
 
Aristidou, A, Chrysanthou, Y, and Lasenby, J. 2016. ​Extending FABRIK with model constraints. ​Comp. 
Anim. Virtual Worlds, 27: 35– 57. doi: ​10.1002/cav.1630​. 
 
Au, Oscar Kin-Chung, et al. "Skeleton extraction by mesh contraction." ​ACM transactions on graphics 
(TOG)​ 27.3 (2008): 1-10. 
 
Botsch, Mario, and Olga Sorkine. "On linear variational surface deformation methods." ​IEEE 
transactions on visualization and computer graphics​ 14.1 (2007): 213-230. 
 
Fairbanks, Eugene F. ​Human Proportions for Artists​. Bellingham, WA: Fairbanks Art and Books, 2011. 
 

SAUCE_D5.9_Tools for synthesizing animation without a rig_30-06-20_DNEG 32 of 33 
 

https://doi.org/10.1002/cav.1630


 

Fröhlich, Stefan, and Mario Botsch. "Example-driven deformations based on discrete shells." 
Computer graphics forum​. Vol. 30. No. 8. Oxford, UK: Blackwell Publishing Ltd, 2011. 
 
Kovar, Lucas, John Schreiner, and Michael Gleicher. "Footskate cleanup for motion capture editing." 
Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation​. 2002. 
 
Pražák, Martin. ​Locomotion for Crowd Animation​. Diss. Trinity College, 2012. 
 
Sumner, Robert W., et al. "Mesh-based inverse kinematics." ​ACM transactions on graphics (TOG)​ 24.3 
(2005): 488-495. 
 
van den Bergen, Gino. "Rotational Joint Limits in Quaternion Space." ​Game Engine Gems​ 3 (2016). 
 
Von-Tycowicz, Christoph, et al. "Real-time nonlinear shape interpolation." ​ACM Transactions on 
Graphics (TOG)​ 34.3 (2015): 1-10. 
 
Xu, Dong, et al. "Poisson shape interpolation." ​Graphical models​ 68.3 (2006): 268-281. 

 

8 Web references 
Clavet, Simon. ​Motion Matching And The Road To Next-Gen Animation​. 2016, 
https://www.gdcvault.com/play/1023280/Motion-Matching-and-The-Road. Accessed 24 June 
2020. 
 

9 Acronyms and abbreviations 
● CFX - Creature Effects 
● CMU - Carnegie Mellon University 
● DCC - Digital Content Creation 
● FABRIK - Forward and Backward Reaching Inverse Kinematics 
● IK - Inverse Kinematics 
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