

D6.5 Animation graph traversal optimisation

Grant Agreement nr 780470
Project acronym SAUCE

Project start date (duration) January 1st 2018 (36 months)
Document due: 29​th​ February 2020 (delay accepted)

Actual delivery date 27​th​ February 2020
Leader IK + UPF

Reply to josep.blat@upf.edu
Document status Submission Version

Project funded by H2020 from the European Commission

Project ref. no. 780470

Project acronym SAUCE

Project full title Smart Assets for re-Use in Creative Environments

Document name D6.5 Animation graph traversal optimisation

Security (distribution level) PU

Contractual date of delivery 29​th​ February 2020

Actual date of delivery 27​th​ February 2020

Deliverable name Animation graph traversal optimisation

Type DEM

Status & version Submission Version

Number of pages 10

WP / Task responsible IK-UPF

Other contributors IK - UPF

Author(s) Simon Woeginger, Hermann Plass, Josep Blat

EC Project Officer Ms. Adelina Cornelia DINU -
Adelina-Cornelia.DINU@ec.europa.eu

Abstract This deliverable is part of the reporting required for WP6 and
details the work carried out within WP6 Task 3 - Time, space
and world-awareness approach for animation synthesis. This
internal report accompanies the demonstrator of the work,
which is publicly available at GitHub

Keywords Machine learning, smart assets, character motion synthesis,
PHS motion library,

Sent to peer reviewer Yes

Peer review completed Yes

Circulated to partners No

Read by partners No

Mgt. Board approval No

Document History

Version and date Reason for Change

1.0 03-02-2020 Document created by Josep Blat

1.1 17-02-2020 Version for internal review

1.2 27-02-2020 Final version for submission

SAUCE_D6.5_Animation graph traversal optimisation_27022020_IK-UPF 2 of 10

Table of Contents

1. ​EXECUTIVE SUMMARY 4

2. ​BACKGROUND 4

3. ​INTRODUCTION 4
3.1. ​Limitations 5

4. ​TRAINING THE SYSTEM 5

5. ​SYSTEM OVERVIEW 6
5.1. ​Adaptation of the MANN Solution 6
5.2. ​Modified Motion Control System 7

6. ​RESULTS 8
6.1. ​Issuing high-level user demand during scene creation 9
6.2. ​Issuing high-level user demand at runtime 9

7. ​DISCUSSION, CONCLUSION AND PERSPECTIVES 10

8. ​References 10

9. ​Acronyms and abbreviations 10

SAUCE_D6.5_Animation graph traversal optimisation_27022020_IK-UPF 3 of 10

1 EXECUTIVE SUMMARY
This deliverable is part of the reporting required for Workpackage 6 (WP6). This report details the
work carried out within WP6 Task 3 ​Time, space and world-awareness approach for animation
synthesis ​carried out during months 7 to 26 (after the extension requested) of the SAUCE project.
This internal report accompanies the demonstrator of the work, which is publicly available at GitHub:
https://github.com/upf-gti/Machine-Learning-for-Character-Animation. A demonstration video is linked
from there (https://youtu.be/Uo6D6h_tlaA).

Within WP6T3. a machine learning model was developed, to be used for character motion synthesis
given a high level user request. This is a step forward towards meeting the goals of developing tools
and methods for smart asset generation, which are outlined within SAUCE WP6.

Section 1 begins with an introduction to the current cutting-edge machine learning model that the
developments of WP6T3 built upon. Section 2 serves as an introduction to the system developed and
it includes a brief discussion on the developed system and its limitations. Section 3 describes the
approaches to source and produce animation data that could be used as training data for the machine
learning model, including tooling developed previously in SAUCE and data supplied by partner
organizations. Section 4 illustrates the developed system as a block diagram and provides details on
the developments made during WP6T3. Section 5 details preliminary results in testing the system
along with a discussion on the applicable use cases.

2 BACKGROUND
The neural network developed during WP63T3 is based on the PhD research project by Sebastian
Starke at the University of Edinburgh. This research addresses quadruped motion control for
locomotion on a flat surface using a ​Mode-Adaptive Neural Network​ (MANN) . 1

The MANN is a recursive (feedback) neural network using the ‘mixture of experts’ concept. It consists
of two parts: a main, ​motion prediction​, network and an auxiliary, gating, network. The velocity of the
feet joints of a given quadruped character along with the desired character direction and velocity are
used as input to the gating network. The motion prediction network takes the character trajectory
data and the current pose of the figure as input.

The input to the motion prediction network is split into ‘future’ and ‘past’ parts. The ‘future’ data is
generated and manipulated during runtime and is used by the network to generate an animation that
follows the trajectory. The ‘past’ portion of the pose provides context which is used to allow the
network to produce consistent expected motion.

The output of the network is an updated character pose in the current frame which results in a new
location and a new orientation for the whole character.

The present work also used parts of the source code made available from the above research work at
Github . 2

1 The preliminary results of this research were published in ​ACM Transactions on Graphics​ 37(4),
2018 (​Proceedings of SIGGRAPH 2018​), available online at
http://homepages.inf.ed.ac.uk/tkomura/dog.pdf. See exact reference at the end of the report.
2 https://github.com/sebastianstarke/AI4Animation

SAUCE_D6.5_Animation graph traversal optimisation_27022020_IK-UPF 4 of 10

3 INTRODUCTION
The overarching goal of WP6 is the development of methodologies and tooling that can be used in
the generation of smart assets, as well as in unlocking existing assets in order to enable their re-use
in scenarios they were not necessarily designed for.

To further these goals, within WP6T3 a machine learning system was developed on the basis of
current cutting-edge approaches as indicated in the previous section. The developments and progress
made are detailed in the following section.

The developed system is used to automatically generate character animation given high-level user
demands. This forgoes the need for hand authoring animation assets or complex state machine
development to control the locomotive state of a given virtual character. This system has been
integrated and tested within the ​Unity game engine, as this is a popular engine choice that is widely 3

used across the creative media industry.

3.1 Limitations

The quality of the character animation generated by the system developed heavily depends on the
data used during training, as it was experimentally found. The following features of the training data
were found to have a high impact on the procedurally generated animation at runtime:

● Fidelity of the animation data used to train the system
● Range of motions included in the training data

The first limiting factor is concerned with the quality of the training animation data. If the training
data is low quality this will be reflected in the output of the system.

The second limiting factor of the machine learned model is the range of motions included in the
training data. If a user demand is issued and the expected motion is not included in the training data,
then the model will not be able to synthesize this motion.

With these two considerations in mind, the training data used must be high quality and include the
types of motion expected given the possible high-level user demands. These limiting factors must be
taken into consideration when sourcing and generating animation data that will be used to train the
developed model.

The next section discusses the methods used to obtain animation data that were suitable for training
purposes.

4 TRAINING THE SYSTEM
Two sources for obtaining animation data for the purposes of training were explored:

● Generating animation assets in-house using the tool developed in WP6T2 by IK
● The PHS motion library supplied by partner Filmakademie within SAUCE

The first source of animation data that was investigated is the tool developed in WP6T2. This tool is a
plugin of ​Autodesk Maya that is used to automatically generate long composite animation sequences 4

from discrete animation clips.

To give a high-level overview of the tool developed in WP6T2, the workflow is as follows:

1. The user imports a bank of animation assets.
2. The user can specify the animations that should be present in the final composite animation

and their ordering.

3 https://unity.com/
4 https://www.autodesk.com/products/maya/overview

SAUCE_D6.5_Animation graph traversal optimisation_27022020_IK-UPF 5 of 10

3. The plugin will then process the animations to generate the composite animation. In-between

animations that transition from one animation to another are generated and included in the
composite animation.

If the user has access to an animation library of varied, high quality animation clips, this method of
generating training data for the neural network addresses the limitations discussed in section 3.1.

In terms of the quality of the animation generated, the automatic generation of the in-betweens in
the final composite clip helps to make sure the transitions from any animation to any other animation
are smooth.

The ability to select any number of discrete clips and their ordering in the final composite clip caters
for generating sets of composite animation clips that contain varied motions.

The second source of animation data used for training the model was the ​PHS motion library created
and supplied by partner Filmakademie . This library of motion capture data includes a comprehensive 5

representation of typical biped locomotion and as such it was well suited to train the neural network.
In practice, this data was used for training the developed neural network. The resulting trained neural
network was able to handle a range of locomotive behaviors that exhibited nuanced and realistic
motion.

5 SYSTEM OVERVIEW

The following figure illustrates the operation of the developed neural network as a block diagram.

Figure 1: System Overview

5 The PHS Motion Library is available online for download: https://www.sauceproject.eu/Downloads

SAUCE_D6.5_Animation graph traversal optimisation_27022020_IK-UPF 6 of 10

5.1 Adaptation of the MANN Solution

The following paragraphs provide details about the work and developments on top of the existing
MANN, whose overview was given in section 3.

1. In the previously existing solution, the MANN was applied to human figures, although the
original research stated that it was only for quadrupeds. The developed system in WP6T3 has
been modified to work well with biped characters

2. The original solution only used velocities of the feet (joints in contact with the floor) to feed
to the gating network. The present solution also uses velocities of other joints for this
purpose. The optimal selection, found by way of experiment, seems to be the feet, the
hands, the root bone and the head. In fact, all joint velocities could be used to help the
gating network set up the experts, but the above selection seems to be a reasonable
compromise between computation cost and its added value. If only the velocities of the two
feet are used to set up the experts, some nuances of the upper body motion (such as the
effect of a swinging arm onto the next step) could be lost in training and the network could
output a static pose (the figure would freeze), instead of motion as it would be expected by
the user. That is, more input to the gating network helps to disambiguate the next pose and
to keep the figure in motion. By appropriately choosing joint velocities relevant for the gating
network, user-supplied action labels can be removed from its input. In the present solution,
action labels have not been used.

3. The original solution (at least the one that was made public) used PI control of the figure
speed (magnitude of horizontal velocity) combined with some low-pass filtering to propagate
the horizontal velocity and the forward (facing) vector of the figure based on user keyboard
or gamepad input. The target velocity and the target direction that resulted from this were
then used to especially shape the future position and the future velocity profiles to make the
figure move. The magnitude control made it difficult to slow down the figure and to make it
move back, while the special shaping of the future trajectories introduced some unnecessary
lag into the system that the PI control had to deal with. The present solution uses
two-dimensional PI velocity control. It calculates a target velocity in 2D based on the desired
2D position of the figure in the new frame. There is no filtering of the PI control output, the
desired speed of response is set by choosing the PI parameters appropriately. The future
position trajectory is generated directly from the PI velocity output using linear extrapolation,
while the velocity is set equal to that in all the future samples. It might seem that having
several future samples containing the same data is inefficient. But it was found that the
network performs better when the number of the past and the number of the present +
future samples are the same, thus offering the network a certain time-based symmetry.
When the number of the future samples is reduced, the runtime performance deteriorates.
Figure orientation (the forward-facing direction) is not explicitly controlled in the present
solution. The desired direction that is passed from the user is just propagated to all the future
samples, leaving the rest to the network.

4. In the original solution, the especially-shaped future velocity and position profiles could also
be optionally blended with the network-predicted future trajectory (comprising future
position, direction and velocity). However, this kind of blending is a source of disturbance to
the main PI control, which is why trajectory prediction by the network has been excluded
from the present solution. The future trajectory was completely removed from the network
output, which freed up resources and simplified the task of the network. The training also
showed a slightly better residual error for the same number of epochs. However, in this setup
the user must supply the desired orientation of the figure to be written to the future samples.
The user normally has this information readily available from the desired trajectory (e.g., as
the gradient of a spline curve).

5. The developed solution also introduces secondary control of body posture in terms of
individual joint trajectories (Joint Velocity Control in Figure 3). This is based on modifying
joint velocities contained within the Pose using PI control to follow user-supplied joint
trajectories. The effect of this new feature was quite limited, however.

SAUCE_D6.5_Animation graph traversal optimisation_27022020_IK-UPF 7 of 10

5.2 Modified Motion Control System

The modified motion control system was shown above in Fig. 1. It includes an optional Joint Velocity
Control block that can change selected joint velocities contained within the pose to more closely
match the desired joint trajectories. The MANN block no longer generates a trajectory prediction.
Trajectory samples no longer contain action labels.

Fig. 2 below shows the final implementation of the Trajectory Control block. The desired velocity is
estimated from the last two trajectory positions and the new position target. Then a velocity update is
computed using a control technique analogous to the PI velocity algorithm for position, only the
velocity itself is the manipulated variable here. The computed update is added to the current velocity
to obtain the target velocity. Using the velocity algorithm avoids integrator wind-up problems as there
is no error integration as such.

Figure 2: Final implementation of the Trajectory Control block using PI velocity control and
velocity-based extrapolation from the current sample to generate future trajectory

The Velocity Extrapolation block generates the future trajectory samples based on the current position
and the computed velocity target. The speed parameter is derived from the target velocity (just using
its magnitude multiplied with the sampling time, the gain mismatch with respect to training is
compensated by feedback control). The present and all the future trajectory samples receive the
same values of velocity, speed and the user-supplied direction (or the last direction, if not supplied).

Fig. 3 below shows the procedure used by the optional Joint Velocity Control block to modify joints
velocities to match their desired position. This is PI velocity algorithm for position control, with the
position update being converted to an equivalent velocity update that is added to the current velocity.

Figure 3: Modifying joint velocities inside the Joint Velocity Control block

SAUCE_D6.5_Animation graph traversal optimisation_27022020_IK-UPF 8 of 10

6 RESULTS

The animation produced by the machine learning system is procedurally generated at runtime.
Issuing the high-level user demand can either take place offline or online during scene play back,
depending on the application. Both scenarios are discussed next.

6.1 Issuing high-level user demand during scene creation

In an offline environment during scene creation within Unity, a user can specify the trajectory a
character should follow and the velocity it should travel at. This is done within a Unity engine editor
session, using in-engine tooling to plot a Bezier curve during scene development. Once the scene is
played back, given a suitably trained network, the developed system will produce character
locomotive animation allowing the character to traverse the trajectory at the required speed.

The image below shows an example setup of the system in action. The purple trajectory, which the
character will traverse, is plotted by the user during the editor session. As the user increases the
desired speed of the character, the locomotive state will adapt from a walking state to a jogging state
and finally to a running state. Since the training data used in this test included a wide range of
locomotive behaviors, the system is able to output suitable and nuanced animation including upper
body arm swinging and leaning naturally depending on the trajectory.

Figure 4: Example of setup during scene creation

6.2 Issuing high-level user demand at runtime

In this scenario, the trajectory and desired velocity can be driven dynamically based on world state by
some implementation of an AI system. Traditional in-engine navigation meshes could be used to
procedurally generate the desired trajectory for the character. This approach would impart a world
and time awareness in our character, as animation is generated depending on the evolution of the
virtual world state.

The second method is intended for use in an online environment such as a typical VR application. In
this scenario the position and rotation of the HMD are used to drive the neural network which will

SAUCE_D6.5_Animation graph traversal optimisation_27022020_IK-UPF 9 of 10

procedurally generate animation for the avatar in the virtual world as the human wearing the HMD
moves through physical space. This offers a potential solution to a hard problem to solve traditionally:
generating lower body animation in VR applications when you only have the head and hands as
tracking points. Modern approaches to this solution typically implement a state machine to control the
lower body animation that is driven based on the available data points which can be unreliable.
Preliminary testing has shown that the machine learning system can generate reasonable lower body
animation given a demand on the head.

7 DISCUSSION, CONCLUSION AND PERSPECTIVES
IKinema passed documentation and code to UPF, that has been working to adapt it for further work,
with some initial support from the code creator (until November). We discuss some aspects of this
ongoing work next.

1) The current implementation demo is based on Unity. It is an interactive scene where the user can
define a trajectory and some speed parameters for a character to move along it while satisfying the
user requirements. This demo is working well. The demo should allow interactive control by the user,
for instance using a gamepad or unity navmeshes. This aspect of the demo in the context of a video
game does not seem to be working correctly, and still refinement seems to be needed to demo this
reliably.

2) The target for the adaptation of this IK work for further work was to achieve full integration within
WebGLStudio​. While progress in understanding and owning the work has been made, this goal has
not been achieved, and being able to retrain the network seems a significant challenge, where further
efforts are needed. UPF-GTI expects to understand better in the coming month (March 2020) the
extent to which this can be achieved, and further efforts have been added.

The results of this deliverable, and indeed WP6T2 and WP6T3 should lead to further work on WP6T4,
Automatic synthesis of in-between animation and procedural transition​. The results of T3 show that
directly applying ML techniques, drawing on historic animation data banks, the generation of smooth
animations, including smooth transitions and in-betweening, satisfying high level semantic demands,
should be achievable. Provided advances in 2) are made, this is the goal that UPF-GTI intends to
push. As indicated earlier, a better assessment of the achievability will be made during March.

8 References
He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural networks for
quadruped motion control. ​ACM Trans. Graph.​ ​37​, 4, Article 145 (July 2018), 11 pages.
DOI:​https://doi.org/10.1145/3197517.3201366

9 Acronyms and abbreviations

AI: Artificial Intelligence
HMD: Head-mounted display
MANN: Mode-adaptive neural network
PI controller: Proportional + Integral controller
VR: Virtual Reality

SAUCE_D6.5_Animation graph traversal optimisation_27022020_IK-UPF 10 of 10

https://doi.org/10.1145/3197517.3201366

