

D6.8 Crowd scene synthesis and metrics for
quality evaluation

Grant Agreement nr 780470

Project acronym SAUCE

Project start date (duration) January 1st 2018 (36 months)

Document due: June 30th 2020

Actual delivery date June 25th 2020

Leader TCD

Reply to Aljosa Smolic - smolica@scss.tcd.ie

Document status Submission Version

Project funded by H2020 from the European Commission

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 2 of 49

Project ref. no. 780470

Project acronym SAUCE

Project full title Smart Asset re-Use in Creative Environments

Document name D6.8 - Crowd scene synthesis and metrics for quality

evaluation

Security (distribution level) Public

Contractual date of delivery June 30th 2020

Actual date of delivery June 25th 2020

Deliverable name Crowd scene synthesis and metrics for quality evaluation

Type Demonstrator

Status & version Submission version

Number of pages 49

WP / Task responsible TCD

Other contributors -

Author(s) David Smyth, Amar Arslaan, Susheel Nath, Pisut Wisessing

EC Project Officer Ms. Adelina Cornelia Dinu - adelina-

cornelia.dinu@ec.europa.eu
Abstract We provide a description of a prototype framework which can

be used to rapidly generate a crowd simulation. The

framework relies on the use of semantic data to feed into AI

modules. We discuss how behaviour is separated from
physical attributes (meshes and animation) which promotes

re-use.

Keywords Crowd simulation, AI, Semantic data

Sent to peer reviewer Yes

Peer review completed Yes

Circulated to partners No

Read by partners No

Mgt. Board approval No

Document History

Version and date Reason for Change

1.0 03/06/2020 Document created.

1.1 15/06/2020 Version for internal review (14 days before submission

date).

1.2 22/06/2020 Version for peer review.

1.3 25/06/2020

Updated with minor changes from peer review feedback.

mailto:adelina-cornelia.dinu@ec.europa.eu
mailto:adelina-cornelia.dinu@ec.europa.eu

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 3 of 49

Table of Contents

1 Executive Summary 5

2 Background 6

3 Introduction 7

3.1 Main Objectives and Goals, Relation to Self-Assessment Plan (D1.2) 7

3.2 Relationship to Other Deliverables 8

4 Implementation of the Crowd Simulation Prototyping System 8

4.1 Methodology 8

4.2 System Overview and Architecture 9

4.3 Scene Processing and Annotating 11

4.3.1 Semantic Data Annotation Using JSON-LD with Contexts 11

4.3.2 Semantic Animation Search User interface 13

4.4 Artificial Intelligence for Crowd Simulation 16

4.4.1 Potential Fields for High-Level Navigation 16

4.4.1.1 Specifying the Potential Function 17

4.4.1.2 Standalone Executable Interface Specification 19

4.4.1.3 Waypoint Length Reduction via Post-Processing 20

4.4.1.4 Interface With Semantic Data 21

4.4.1.5 Potential Field Goal Chaining 21

4.4.1.6 Waypoint Editing 22

4.4.1.7 Unity Implementation 23

4.4.2 Local Avoidance Implementation 24

4.4.3 Integration of Animation Triggers 25

4.4.4 Motion Stylization Implementation 26

4.4.5 Object Pooling for Runtime Creation and Destruction 28

4.5 Use Cases 28

4.5.1 Social Distancing in an Open Square 29

4.5.2 Pedestrian Scene 36

4.5.3 Commuter Scene 38

4.6 Metrics and Evaluation 41

4.6.1 Evaluation Metrics and Methods for Laboratory Testing 41

4.6.1.1 Software and Hardware Specifications 41

4.6.1.2 Stress Testing 41

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 4 of 49

4.6.2 Description of Methodology for Expert Review 44

4.6.3 Modifications Due to Covid-19 Pandemic 44

4.6.4 Steps Involved in Expert Review 45

4.6.5 Measurements 45

5 Conclusion 46

6 References 47

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 5 of 49

1 Executive Summary

This deliverable represents the total contribution to WP6T6: Crowd Scene Synthesis. It builds on the

foundation laid in D6.3: A working framework to handle relationship contexts between scene and
people. The overarching goal of this deliverable is to document a toolset and framework that leverages

state-of-the-art techniques for the automated prototyping of re-usable crowd simulations. Our toolset
has been developed in close collaboration with project partners. To aid development and evaluation,

we devised a number of use cases which demonstrate the core technologies developed and

demonstrate the versatility and potential of the toolset.

The approach taken was modular, where we break down the process of developing a general crowd

simulation into various modules, with interfaces between modules defining the system. An overview of
the approach is provided in Section 4.2. The modules separate behaviour from physical attributes,

allowing for re-use of behaviours. These modules comprise our main contribution and were
implemented in the Unity game engine, but we have documented them in anticipation of their use in

other platforms. The toolset strongly promotes reuse of crowds through semantic data, which

corresponds to a key theme of the SAUCE project. This has allowed us to collaborate with other project

partners to leverage their developed technologies.

In relation to the Self-Assessment Plan (D1.2), this deliverable is a complete report on the work
done for WP6T6. The complete design and architecture of the system are provided and the details of

the technical implementation are given in Section 4. We report on metrics and the planned evaluation

in Section 5. This deliverable builds on the work initially set out in D6.3 and ties together work outlined
in D4.1 Semantic Search Framework, D6.6 Motion Stylization Implementation , D5.3 Basic capability to
enable asset transform and will contribute to D8.4 Report on Experimental Production Scenario Results
and D8.5 Combined Evaluation Report.

The evaluation of this toolset by independent users has been planned in Section 4.6 and the details will

be reported in D8.4 Report on Experimental Production Scenario Results and D8.5 Combined Evaluation
Report. Preliminary feedback from project partners who have been involved in the pilot study suggests
that this work has strong potential for use in virtual production pipelines. Our own experience of this

work suggests that this is a promising avenue for crowd simulation research. We anticipate that this
work may be extended and lead to further attempts to bridge the gap between recent advances in AI

and the current approach in the virtual production industry, which can often be heavily manual. Figure

1 - Figure 3 show some stills that display some results achieved when using our toolset.

Figure 1 An example crowd scene developed using our toolset

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 6 of 49

Figure 2

Figure 3

2 Background

The generation of crowd scenes for the film traditionally involves the hiring of extras, which can be

costly from a monetary, time and organisational viewpoint. An in-depth discussion for the reasons

behind this is provided in [1, p. 218] (we paraphrase from Section 12.1.1): The magnitude of the cost
of crowd extras was aptly demonstrated in the film Waterloo, which employed over 15,000 extras but

failed to even recoup its production costs. In more recent years, crowds in film scenes have turned
virtual, with well-known examples including I am Legend [2], The Lord of the Rings [3] and World War

Z [4]. A variety of standalone software and software suites have come into existence to help automate

this task (Massive [5], Menge [6], UCrowds [7], etc.). These tools have also been used for general
crowd simulations, which encompass evacuation scenarios, footfall modelling and pedestrian modelling

for self-driving cars. In the last number of years, it has been identified that there is a demand for
crowds that are reusable [8]: this means that the development of a crowd for one scene should not be

a once-off process, but rather be something that can be adjusted to fit other similar scenarios, saving
time and effort. This is explicitly described as a research aim in the SAUCE proposal abstract: “Real-
time control systems for authoring animated content using smart assets, automatically synthesizing
new scenes from existing ones and integrating smart assets into virtual production scenarios “. The
main scope of this deliverable is to outline the toolset we have created, which can be used to develop

crowds that are reusable through semantic data attached to their environments.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 7 of 49

3 Introduction

This document outlines how the use of semantic data related to the environment can drive crowd

behaviour, providing a way to de-couple crowd behaviour from their environment. This promotes a core
concept of the SAUCE project: “using smart assets which are adaptive to context, purpose, the user
and the production environment” [9]. The Background chapter has already introduced some of the key

motivation behind the work. The remaining chapters are structured as follows:

The rest of this chapter sets out the main objectives and goals of the work and outlines the methodology

behind our approach.

Chapter 4 (Implementation of the Crowd Simulation Prototyping System) provides the details of the

implementation and the reasoning behind our approach. It is broken down into:

• System Overview and Architecture, which outlines the high-level design of the system, split into

modular parts.

• Scene Processing and Annotating, which gives details of how scenes are processed and annotated
with semantic data.

• Artificial Intelligence for Crowd Simulation, which gives the details of the technical implementation

of the artificial intelligence modules developed to simulate crowd behaviour.

• Use Cases, which provides tangible examples of how the toolset can be effectively used for various
scenarios. This builds on the use case initially proposed in D6.3 using LiDAR data. We outline three

use cases:

1. The first use case employs the use of assets developed in a previous crowd simulation project

completed at TCD called Metropolis [10] and depicts a dense crowd scene in a large, open main
square. Our toolset is used to demonstrate how “social distancing” can be implemented in this

scene. We also leverage the semantic environment labels subsequently gathered for this
environment, outlined in detail in D6.3.

2. The second use case entails a scene in which groups make their way along a street, avoiding

benches, streetlights and other pedestrians in a natural manner. The scene uses assets
developed by Filmakademie as part of an experimental production entitled “Love and Fifty

Megatons” [11].
3. The final use case is the one initially described in D6.3. A group of commuters make their way

down a street. This scene uses the LiDAR-constructed environment in D6.3. We re-target the
crowd developed in the second use case to this scene, demonstrating the time-saving potential

of our approach.

• Metrics and Evaluation, which contains the details of a planned user study, which will provide a
way of objectively evaluating the effectiveness of the toolset. We also state which metrics we will

collect and how we propose to collect them.

In the final Conclusions chapter, we highlight ways in which this work could be built upon and offer

some conclusions on the important aspects of the system.

3.1 Main Objectives and Goals, Relation to Self-Assessment Plan (D1.2)

The primary objective of this deliverable is summarised in WP6T6: “to employ semantic description of
the assets and scenes to understand the relationship, context, and the distribution of people (crowd
agents) in the scene. The process involves using this information to populate a new scene with crowd
agents in believable situations and have them demonstrate expected behaviour.” This was motivated

by a gap in existing technologies, identified by the SAUCE consortium.

The primary objective can be broken down into the following constituents, which we used to guide the

progression of the work:
1. A systematic way to create or add semantic data at the scene level.

2. A systematic way to link semantic data to the crowd behaviour.

3. A systematic way to link crowd behaviour to meshes and animations.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 8 of 49

The main goal of this work is to develop a system that offers a time-saving when developing a working
prototype of a crowd simulation, achieved by re-targeting an existing crowd simulation. This is described

in D1.2: Self-Assessment Plan:

• Advance on the state of the art: ability to automatically populate new scenes based on examples
taken from previously created and annotated scenes that are semantically similar, meeting

metrics for quality evaluation defined in D6.8.

• Technology improvement: 50% time saving when editing the scene or quality of synthesis

useful for pre-visualization or real-time application.

We comment on these goals and objectives in Section 4.6 and Section 5 in relation to our evaluation

plan. We will conclude on whether we have achieved the goals and objectives once the evaluation of
the system has been carried out and this will all be reported on in D8.4 Report on Experimental
Production Scenario Results, and D8.5 Combined Evaluation Report.

3.2 Relationship to Other Deliverables

This deliverable makes use of the technologies developed in following SAUCE deliverables:

• D6.3: A working framework to handle relationship contexts between scene and people

• D4.1 Semantic Search Framework

• D6.6 Motion Stylization Implementation

• D5.3 Basic capability to enable asset transform

This deliverable will be evaluated in WP8 as part of:

• D8.4 Report on Experimental Production Scenario Results

• D8.5 Combined Evaluation Report

4 Implementation of the Crowd Simulation Prototyping System

4.1 Methodology

Our methodology broadly follows the reasoning presented in [12]. A crowd simulation should “expect
to simulate the visual texture and contextual behaviours of groups of seemingly sentient beings” (P.1).

A crowd can typically be described at a high-level by a global set of requirements (e.g. evacuation),

but it is also noted that “computational methods for modelling one set of requirements may not mesh
well with good approaches to another”. (P.1). This intuitively means there is no “silver bullet” for

computational crowd simulation: one approach will typically not work well for every realistic situation.
This has led to several key general features being identified for a typical crowd, which reflect the areas

in which research has addressed over recent years: Appearance, Function, Time, Autonomy and
Individuality. [13]. These can be thought of as the primary axes along which crowd simulation research

is carried out. This deliverable (and the SAUCE project as a whole) is focussed on the re-use of smart

assets, therefore from this list we primarily address autonomy, time and function:

• Autonomy refers to how much manual intervention must be applied to control a crowd
member’s behaviour. A high level of autonomy implies little manual intervention. This can

typically be achieved using artificial intelligence.

• Time specifically refers to how much time is needed to update each frame of the simulation.
Real-time simulation is typically characterised as 24 fps or higher, in accordance with human

perception.

• Function refers to how well a character can be calibrated to do certain tasks. This typically

manifests itself in the rig configuration, cognitive models, joint limits, and other abilities such
as animation-retargeting.

Intuitively, a re-usable real-time crowd system must have high levels of crowd member autonomy,

must operate at > 24fps and must provide sufficient functionality per character to produce groups of

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 9 of 49

“seemingly sentient beings”. These three aspects allow us to address and achieve the sub-objectives
in Section 3.1 in a structured manner.

In creative productions, individuality and appearance are addressed as a final step once the scene has

been finalised, since they do not significantly affect the configuration of the scene. Once a crowd scene

has been prototyped and finalised, higher-quality meshes and models are typically used for the fully-
rendered production version. We therefore do not treat them as core aspects of this work, even though

they appear on the list above.

Given this high-level approach, we provide details in Section 4 as to how we applied this methodology
to the development process.

4.2 System Overview and Architecture

The crowd scene synthesis system developed to address the objectives for this deliverable was designed
in a modular fashion to promote re-use and ease of creation of custom crowd simulations. This section

serves as a guide in how these modular pieces work together, with subsequent sections providing the

details of the technologies developed for each of the modules. As mentioned in the introduction section,
we identified autonomy, time and function as key aspects in this work, which are reflected in the system

architecture.

The high-level system architecture is shown in Figure 4. This figure is not exhaustive, but it shows the
main components that have been developed for this deliverable. We emphasize the split between the

scene and crowd members, which is a key factor for re-usability. The interfaces between modules

developed for each of these are shown here. We factored out the semantic configuration of both the
scene and people since configuration can be done as a pre-processing step.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 10 of 49

Figure 4 An overview of the crowd simulation framework

This diagram factorises a crowd scene into four main parts, which reflect the sub-objectives identified

in Section 3.1. These correspond to the sub-figures shown in Figure 5.

1. The physical scene with accompanying semantic data.
2. The processing and configuration of the semantic scene data.

3. Crowd member physical parameters and animations.

4. The crowd behaviour.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 11 of 49

Figure 5 The main constituents of our crowd simulation framework

These parts feed into the real-time crowd simulation, which we have implemented using the Unity game
engine [14].

4.3 Scene Processing and Annotating

Since our planned approach leverages the use of semantic data, we developed tools to help process

existing scenes to annotate them with semantic data. We also developed several Unity-specific tools to
which automate some tedious parts of running the simulation.

4.3.1 Semantic Data Annotation Using JSON-LD with Contexts

AI algorithms can be highly complex and difficult to interpret, therefore, to avoid nonsensical output
that can be difficult to debug, the input parameters are required to be uniformly structured and well-

defined. A key challenge presented by this work is how to transform the available semantic data into a

uniformly structured and well-defined form that can be used as input to AI algorithms. This is illustrated
in Figure 6, where the question mark represents the process of transforming arbitrary data sources to

a common structure for AI modules.

Figure 6 Semantic Data must be transformed to common structure for AI modules.

A tangible example of this is shown in Figure 7. Two different sources of semantically annotated data

need to be transformed to a common structure to feed into an AI module. Although the labels are
similar, the data have different hierarchies and labels.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 12 of 49

Figure 7 Semantic data must be structured in a common format when input to AI modules

We implemented this using JSON, with schemas and contexts. The main reasons for this are that JSON

is readable and writable by both machines and humans, libraries exist in many languages to parse it
and it can be serialized and distributed with minimal overhead. Consistency is also ensured using

schemas, which can enforce constraints. The main drawback is that schemas must be manually defined.

To preserve the continuity and coherence of the work completed as part of SAUCE, we based our

implementation on D4.1 Smart Search Framework, which in turn is based on D2.1 and D2.3. D4.1
documents the implementation of a mature and robust framework which supports the creation,

extension and re-use of existing vocabularies and ontologies for arbitrary semantically annotated assets.
We refer the reader to this D4.1 for an in-depth exposition. The Smart Search framework provides the

ability to download assets along with related structured semantic data. We use the same structure,

which is implemented using JSON with context provided by schemas.

We developed a simple tool in the Unity editor which automates the creation of JSON files if they don’t
exist, for any asset in a given scene. The user can edit the parameters of the generated JSON files as

desired directly from the Unity editor, or they can edit the file externally through a text editor or
programmatically. The tool also allows JSON files to be validated against a schema inside the editor to

ensure the structural integrity of the data. The data can be validated and then read by the AI algorithms

to ensure that the input is valid. Section 4.4 outlines the main AI algorithms used, which require a well-
defined input due to the high number of parameters.

A simple example is shown in Figure 8 and Figure 9 below. For an arbitrary scene, we would like to

specify spawn locations and obstacle locations for our crowd scene using semantic labels. For each

asset in the scene, it is possible to create an associated JSON file with default parameters shown in the
schema in Figure 8. The user can then update the file to specify whether the asset should be treated

as a spawn location, an obstacle or undefined. This can easily be done programmatically. An example
of a configured JSON file corresponding to this schema is shown in Figure 9. This data can trivially be

used for any other platform by simply reading the JSON file. When running the crowd simulation, we

can parse the scene for all the assets with the “Spawner” label and then read in their corresponding
spawn location. This is a simple example, but it demonstrates how this approach facilitates a consistent

way to format data which can be used for any platform. This means that if the same scene were to be
implemented using Houdini, for example, the scripts to actually use the spawn locations and obstacles

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 13 of 49

would have to be re-written, but the interface remains consistent so the data does not need to be
transformed or modified from the json file, simply read.

Figure 8 An example of a schema for annotating Figure 9 An example of a json file with semantic data

objects as spawn locations or obstacles

4.3.2 Semantic Animation Search User interface

A main theme of SAUCE research is the development of semantic descriptors to promote the re-use of
assets. In line with this, work was published by researchers at TCD [15] which is able to accurately and

automatically classify animation data according to four classes: “bending down”, “jumping”, “running”

and “walking”. SAUCE deliverables 7.1 and 7.2 outline a detailed system for semantically annotating
and storing numerous modes of data, including animation, which is actively used by multiple SAUCE

partners. As part of our contribution, we have designed a lightweight standalone database querying
tool that can query semantic labels and conveniently export animations to Unity.

We anticipate that for the sake of prototyping, the viewer and exporter will offer a significant time
saving. For demonstration purposes, we have coupled this tool with animations from databases that

have been liberally licenced for research purposes: the CMU Graphics Lab Motion Capture Database
and Filmakademie’s PHS motion library. Both databases contain data that has already been semantically

labelled and the CMU library has additional semantic labels from the classifier in [15]. The viewer allows

for the addition of arbitrary new animation sources. This provides an interface from the animation
database to the Crowd Agent Manager, highlighted in red in Figure 10.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 14 of 49

Figure 10 The Animation DB querying tool provides a way to link the Animation DB to the Crowd Agent Manager.

The database viewer was written with small animation studios in mind. While designing the viewer, we
considered that these studios may not have well-designed databases to structure their data but may

use a simple directory system to categorise their assets. This led to the decision to assume that the

data is stored in a local file system. The semantic data is assumed to be held in a csv file, which also
contains metadata such as the origin of the asset and licencing restrictions. The idea is that files can

be uploaded to the file system with all their associated data and metadata in the csv file, which
effectively acts as an indexing system. The upload and deletion of files to the local system with

associated metadata in the csv file can easily be scripted.

The viewer assumes that the file metadata exists in a tabular format in the csv file - there are no

restrictions on the number of fields, but the file name is mandatory. This is analogous to a primary key
in a standard database system. The user can search each field present in the csv file. Animations in the

table can be visualised (Figure 12), with the caveat that they must either be in Biovision .bvh format.
The viewer was written using the R Shiny web development framework, which also means it can easily

be configured to run on a server.

Figure 11 shows the sample search fields for the user interface. The user can create filters for each of

these search fields. The figure demonstrates the user applying a filter for animations with a description
that matches or partially matches “walk”. Once they have applied the necessary filters, they can

visualise animations to ensure they are suitable for their application. Figure 12 shows a sample frame
of a “walk” animation from the CMU database. Finally, once the user is satisfied with the animations,

they can add them to an export table, shown in Figure 13. This export table records all animations to

be downloaded. Once the user presses the “download selected” button in Figure 13, the animations in
this table are retrieved from the file system, zipped and made available in the users “downloads” folder,

which can then typically be directly imported as a batch into the users simulation engine (Unity in our
case).

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 15 of 49

Figure 11 Each metadata field can be searched.

Figure 12 Animations can be viewed inline.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 16 of 49

Figure 13 Animations can be added to an export list which can be directly imported to Unity or any other

simulation engine.

4.4 Artificial Intelligence for Crowd Simulation

We implemented a number of Artificial Intelligence modules as part of our framework. These provide

the logic to imbue crowd members with believable characteristics. These include:

• A standalone module to calculate calibrated paths to a goal destination around obstacles.

• A module which implements local avoidance among crowd members.

• A module which triggers animations among crowd agents based on semantic labels.

• A module which can stylize animations, which uses work completed by UPF in D6.6 Motion

Stylization Implementation.

We provide the implementation details of these modules in the next sub-section. The Use Cases
presented in Section 4.5 provides tangible examples of how these modules can be used to rapidly

prototype crowd scenes.

4.4.1 Potential Fields for High-Level Navigation

High-level navigation here refers to the calculation of a viable path from one point to another, taking

into account soft constraints. It does not directly consider artefacts such as potential collisions, which
are treated separately as a post-processing step. The criteria for high-level navigation are derived from

the objectives and goals identified in Section 3.1:

1. The system must perform in real-time.

2. The system must provide autonomy: excessive manual intervention is not desired.
3. The system must provide adequate functionality to allow real-time prototyping.

We evaluated a number of approaches based on existing literature and chose the potential field

approach as the most suitable based on the identified criteria. The potential field implementations for

crowd simulation outlined in [16] and [17] provide a basis for our own implementation.

The implementation of the potential field module was written as a standalone application in python,
due to its abundance of scientific libraries and rapid prototyping time. The language-agnostic details

are presented here. For an in-depth exposition on potential fields in AI, we refer the reader to Chapter

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 17 of 49

4 of [16], which our implementation is based on. Modifications made to reflect the differences in
simulated human motion to robot motion.

4.4.1.1 Specifying the Potential Function

A potential field can be represented as a function of spatial coordinates that is

differentiable. We are concerned only with the two-dimensional case for crowds: . The

potential can be thought of as energy, with the gradient interpreted as force, meaning that each crowd
agent can use the potential field to calculate a force to be applied to it.

The potential at any given point in is calculated as the sum of an arbitrary number of differentiable

functions of the form , i.e. . This allows the potential function to be configured to

incorporate ‘hills’ and ‘troughs’, which affects how a crowd member moves in the field. Given this

potential function, each crowd member can follow a path ‘downhill’ by following the negated gradient
of the potential function. Figure 14 illustrates an example of a potential field in 3 dimensions, while

Figure 15 shows the projection of this surface onto 2 dimensions in the form of a contour plot.

Figure 14 An example of a potential field.

Figure 15 2D projection of potential field with contour plot

The end-user can specify each to be used in the potential field, however this is typically a highly
tedious. We provide 2-D Gaussian distributions to specify the , since it is very easy to specify the

scale, location and shape of these functions. Figure 16 and Figure 17 show how the covariance matrix
can be narrowed along each axis, which means they can effectively approximate different shapes. Note

that Figure 16 can approximate a rectangle when projected onto two dimensions, whereas Figure 17

approximates a circle. Gaussian distributions also have the advantage of having a strong local effect
but a weak global effect. This means that they can be defined to intuitively specify the agent's path

locally.

https://www.codecogs.com/eqnedit.php?latex=U%3A%20%5Cmathbb%7BR%7D%5Em%20%5Cto%20%5Cmathbb%7BR%7D#0
https://www.codecogs.com/eqnedit.php?latex=U%3A%20%5Cmathbb%7BR%7D%5E2%20%5Cto%20%5Cmathbb%7BR%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbb%7BR%7D%5E2#0
https://www.codecogs.com/eqnedit.php?latex=U_i%3A%20%5Cmathbb%7BR%7D%5E2%20%5Cto%20%5Cmathbb%7BR%7D#0
https://www.codecogs.com/eqnedit.php?latex=U%20%3D%20%5Csum%20U_i#0
https://www.codecogs.com/eqnedit.php?latex=U_i#0
https://www.codecogs.com/eqnedit.php?latex=U_i#0

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 18 of 49

Figure 16 Gaussian with covariance matrix

Figure 17 Gaussian with covariance matrix

Given an arbitrary potential function, , a gradient descent algorithm can be applied to derive
a path, as noted above. Once again, we refer the reader to [16] for details in this context. However,

there are a number of drawbacks to “vanilla” gradient descent:

1. It may not succeed in finding a path to the goal if local minima are present in the potential
function.

2. If there is a slight “ridge”, it may not succeed in finding a path to the goal.
3. Gradient descent requires a step-size which is small enough to avoid skipping over ridges and

minima/maxima, but not so small as to cause excessive computation time.

Common remedies to these issues are to ensure there is only a single global minima, to discretize space

and to incorporate backtracking/random walks. Since we do not intend to apply this algorithm for true
navigation in an unknown scenario, we instead propose the following:

• The main objective of crowd simulation is to create a group of “seemingly sentient beings”.

• The chief concern for high-level navigation is therefore to create a believable path.

• Believability is a subjective measure; therefore, we must provide a highly configurable path
instead of a single “correct” path. If the user is not satisfied with the calculated path, they

should be able to modify it until it is believable.
• The agents must be able to use the calculated paths in real-time.

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bpmatrix%7D%206%20%26%200%20%5C%5C%5C%5C%200%20%26%201%20%5C%5C%5C%5C%20%5Cend%7Bpmatrix%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bpmatrix%7D%206%20%26%200%20%5C%5C%5C%5C%200%20%26%206%20%5C%5C%5C%5C%20%5Cend%7Bpmatrix%7D#0
https://www.codecogs.com/eqnedit.php?latex=U%20%3D%20%5Csum%20U_i#0

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 19 of 49

• The paths should provide a realistic and smooth trajectory to satisfy the believability criteria.

Based on these principles, we modified the vanilla gradient descent algorithm so that for a “reasonable”

input, a path is usually successfully calculated. This path can be easily configured by altering the
potential function using gaussian functions. The key modifications to vanilla gradient descent to

accommodate this are:

• The addition of a momentum term to alleviate the local minima issues.
• The addition of a term to guide the crowd member in the direction of the goal, in case the

gradient guides the crowd member away from the goal.

• A post-processing step to calculate a piecewise linear function that reduces the number of

points on the trajectory, providing a motion that does not oscillate.

The algorithm for calculating the path using a modified gradient descent is shown in Figure 18.

Figure 18 A modified Gradient Descent for path-finding with a potential field

4.4.1.2 Standalone Executable Interface Specification

We implemented this algorithm as a standalone executable. The interface requires the following input
parameters:

Parameter
Name

Description

Goal Position The (x,y) location of the goal position.

Goal Potential

Coefficient

A coefficient which scales the potential of the goal position (higher values

mean stronger attraction).

Start Position The (x,y) location of the start position.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 20 of 49

Repulsor Locations The (x,y) positions of the Gaussian repulsors .

Repulsor Standard
Deviations

The covariance matrix of each repulsor (in 1-1 correspondence with
Repulsor Locations) representing the 2D "spread" of each repulsor.

Repulsor Potential
Coefficients

The coefficients used to scale the calculated potential of the Gaussian
repulsors.

Attractor Locations The (x,y) positions of the Gaussian attractors.

Attractor Standard
Deviations

The covariance matrix of each attractor (in 1-1 correspondence with
Attractor Locations) representing the 2D "spread" of each repulsor.

Attractor Potential
Coefficients

The coefficients used to scale the calculated potential of the Gaussian
attractor.

Timeout The maximum amount of time that can be used to find a path to the goal.

The output is provided as a sequence of (x,y) points, leading from Start Position to Goal Position. A

brief analysis of the performance of this standalone module is provided in Table 6.

4.4.1.3 Waypoint Length Reduction via Post-Processing

Once a suitable path for each crowd member has been calculated, they need to be able to calculate
suitable velocities to traverse this path. Velocity updates can be disjointed if the points on the path are

close together. We developed a waypoint length reduction algorithm to address this problem.

The reduction of the number of waypoints for the calculated path is done via a post-processing step.

This takes the sequence of (x,y) points and applies the following procedure:
1. A piecewise linear model is desired to fit the data piecewise, for m+1 segments. In order to

fit the model, m breakpoints are required. There is a trade-off between the number of
breakpoints, m, and the quality of the fit, measured by the Residual Sum of Squares (RSS). We

allow the user to specify m as a proportion of the original number of points.

2. We find the breakpoints using the R breakpoints function, found in the strucchange library [18]
which is an implementation of the method found in [19]. This method is based on a dynamic

programming approach and provides an estimate for the vector of breakpoints m.
3. We then use these breakpoints to fit a piecewise linear model, which uses the breakpoints

found in 2. This is done using the R segmented function from the segmented library.

4. Finally, we use the linear model from 3 to provide estimates of the dependent variable at the
breakpoints.

A result of the application of this algorithm can be seen in Figure 19.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 21 of 49

Figure 19 The black line represents (x,y) points outputted by modified gradient descent. The red line represents

the corresponding (x,y) points calculated by the piecewise linear regression, decreasing the number of (x,y)
points on the path by a factor of ~20

4.4.1.4 Interface With Semantic Data

Section 4.3.1 outlines how we intend for semantic data to be used to drive the crowd behaviour.

Instead of asking the user to specify every single parameter for the potential field path calculation, we

created an interface between the path planning module and the semantic data annotation module.
Specifically, we provide the user with a schema, which can be attached to scene assets. Once this

schema has been used to create a JSON file, the path planning module can then either infer or directly

read all the input values from this file.

This has three key merits:
1. It offers a significant time saving to the user by avoiding the manual specification of all

parameters.
2. It guarantees that the user has specified the data in the right format.

3. It guarantees consistency in how the data should be formatted - if there is an issue with the

input data, this will be detected before the path calculation begins.
4. It promotes re-use: the schema and path-finding module can be re-used across scenes.

The first is obvious but the other points are more subtle. Generally speaking, AI modules require a

specific input in order to calculate an output. A frequent source of error is inputting data that is

incorrectly in format or context: this is often summarized with the phrase “Garbage in, garbage out”.
In order to avoid occurrences of this, we first validate any data that will be fed into the pathfinding

module using the JSON schemas explained in Section 4.3.1.

This was only partially carried out in Unity due to implementation complexities. The JSON schema is

intended to reflect the user configurable input parameters. Future iterations of this work could build on
this idea to develop a mature and robust interface.

4.4.1.5 Potential Field Goal Chaining

An obvious limitation of the above approach is that a path to an only single goal location can be
calculated in advance. We anticipate that the user may know in advance that the crowd agent should

move between sequential goal points. We offer a simple extension as follows:

• The user may set out several goal points that are “chained” - they are assumed to be in
sequential order.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 22 of 49

• Specifically, we let the user specify a set of triples: <start_pointi, potential_fieldi, goal_pointi>.

Each of the triples in the set is used to calculate a path from start_pointi to goal_pointi using
potential_fieldi. It is required that start_pointi+1 is equal to goal_pointi, to ensure continuity.

This is implemented by iteratively applying the path calculation (implemented as a standalone
executable) to each triple, and then simply combining each of these paths together. The result of this

can be seen in Figure 20, where the three sequential goal locations are shown in green and the repulsive
forces are highlighted in purple. The calculated path is shown in yellow. The accompanying set of triples

used in the configuration is shown in Figure 21.

Figure 20 Goal locations are shown in green. Locations of repulsive forces are shown in purple.

Figure 21 The configuration used to calculate the path displayed in Figure 20. Note that start_pointi+1 is equal to

goal_pointi

4.4.1.6 Waypoint Editing

As mentioned throughout this deliverable in relation to path planning, a key aspect for our target end

users is believability. To that end, we implemented a waypoint editing tool which allows the user to
manually specify the positions of cached waypoints calculated by the potential field module if they are

not fully satisfied with the automated results. Once the user has finished editing the waypoints in real-
time, they can save their updated positions to the cache. This allow real-time editing of the

automatically generated path through the Unity interface. We implemented this in Unity by displaying

the transforms of each waypoint using a “capsule” object, allowing the user to drag each to the desired
position. This is demonstrated in Figure 22 - Figure 25, where edit mode is entered in Figure 23, the

pre-calculated path is updated in real time in Figure 24 and then edit mode is exited and the updated
path is saved in Figure 25.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 23 of 49

Figure 22 Automated planned path displayed.

Figure 23 Edit mode engaged

Figure 24 Waypoint dragged to new position

Figure 25 Updated path saved to cache and edit mode exited.

4.4.1.7 Unity Implementation

The complete integration of this module in Unity allows for paths to be automatically calculated in
advance of running the simulation in Unity. We had the choice to either integrate this module to

perform the calculations in real-time, or to carry them out in advance of the simulation run. We

consciously chose to carry out the calculations in advance of the simulation run, for the following
reasons:

• Crowd scenes typically require a lot of resources for rendering and updating, so cutting down

on any run-time computation is advantageous.

• Calculating paths before run-time means that the user can check that they are suitable in

advance of running the simulation. We implemented a real-time way-point editing tool,

outlined in Section 4.4.1.6, to allow the user to update and save automatically calculated

waypoints before run-time.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 24 of 49

Once the crowd members configuration has been set in Unity, the configuration is read and the paths
are automatically calculated and cached when the user clicks the “write path to file for selected

agents” button in the navigation toolbar. This must be done in advance of running the simulation. If
the user updates the configuration by manually moving around crowd members and repulsive forces,

they will need to re-calculate the path by clicking the “write path to file for selected agents” button in

the navigation toolbar again. Once the simulation is running, the cached paths for each crowd
member are read and followed. They cannot be adjusted while the simulation is running.

4.4.2 Local Avoidance Implementation

The potential field path planning in Section 4.4.1 does not account for the fact that calculated paths

may lead to conflicts – crowd members may collide while traversing. This problem is usually resolved
by implementing a post-processing “local avoidance” algorithm. This has a large body of literature

behind it and many mature, robust and efficient libraries have been implemented.

Unity’s in-built Reciprocal Velocity Obstacles (RVO) library provides an implementation of local
avoidance [20] . It does so by auto-assigning a collision avoidance radius and “avoidance priorities”. A

higher priority means the associated game object will maintain its traversal speed to accommodate
smooth navigation, while game objects with lower priorities “give way” and alter their traversal speeds

to prevent collisions.

This occasionally gives rise to an outlier scenario. The crowd members may undergo oscillations of their

velocities [21]. If two crowd members are assumed to travel with velocities vA and vB respectively and
possess overlapping paths, in order to avoid potential collisions, either crowd member A or crowd

member B alters their velocities to v’A or v’B to let the other member pass. As their old velocities lead
them directly to their goal positions, each then revert to their previous velocity. This process continues

until either of the members have reached their destinations, leading to repeated oscillations in their old

and new velocities. Due to the random sampling nature of RVO, this application of local avoidance
sometimes causes the members to lock onto each other’s collision avoidance radius and not let the

other pass, termed as a “reciprocal dance”. This issue prominently arises in high density of crowd
members, specifically in regions with narrow passages due to the crowd members having a limited

amount of space to navigate around each other and the velocities of each agent in proximity affecting

local avoidance as highlighted in Figure 26.

Figure 26 Example scenario that may lead to reciprocal dances

This deadlock can be overcome by using the Reciprocal Velocity Obstacles 2 (RVO2) library [22], which
is an iteration of the Reciprocal Velocity Obstacles (RVO) library [21]. RVO2 uses Optimal Reciprocal

Collision Avoidance (ORCA) for local avoidance. It considers a global radius in the entire scene and
keeps track of the agent's positions and velocities. This solution determines the agents that are in

vicinity to one another globally and causes them to appropriately slow down. Under the library’s
documentation [23], RVO2’s “ORCA defines velocity constraints with respect to other agents as half-

planes, and an optimal velocity is efficiently found using (two-dimensional) linear programming. In

contrast, RVO Library 1.x uses random sampling to find a good velocity”. Figure 27 demonstrates a
simple scene using the RVO2 library.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 25 of 49

Figure 27 No deadlock scenarios observed

Unity’s NavMesh Agent provides rudimentary components for navigation, namely, A* pathfinding and

dynamic obstacle avoidance. These components are by default linked to the RVO component, that takes
in the agent’s velocity to determine ideal local avoidance. Our implementation also allows an RVO2

component to be attached to prevent the reciprocal dances and deadlock caused by the RVO library.
Although the integration of RVO2 as an addon may impact performance due to basic calculations being

performed by the in-built RVO and then overwritten by the RVO2 library, the RVO2 library provides a

typically better local collision avoidance and we found the trade-off to be worthwhile in scenarios

involving large crowds. Details of the performance impact can be found in Table 3.

4.4.3 Integration of Animation Triggers

This sub-section reports a way to link semantic annotations in the scene with animations for crowd
members, which provides a simple and scalable way to produce believable behaviour.

Since we are dealing with crowd scene with potentially thousands of members for a real-time

application, evaluating complex behaviour trees or action utilities for each agent threatens a significant

drop in framerate. Although these approaches offer a high level of individuality and autonomy, which
were identified as desirable traits in 8, they also often require extensive configuration which is not

suitable for prototyping scenes with large crowds. In future iterations, we would ideally incorporate
these approaches in an automated way for large scale crowds. Our chosen approach builds on the

semantic theme of SAUCE. We describe the general steps and our Unity-specific implementation.

Our framework allows animations for agents to be triggered via spatial cues. We detect when an

agent has entered a specific region. This region has an associated semantic action – for example the
region in front of a water fountain could have an association semantic “drink” action. Once the agent

enters this region, if a “drink” animation is present among the set of animations it will pause the
agents navigation component, play the animation and then resume the agents navigation component.

The major advantage of this approach is that it is one-to-many: one semantic drink animation can

trigger many different “drink” animations for different crowd members. We rely on semantic labelling
for this to be carried out. A further advantage to this is that it allows agent to query semantic labels

and then decide on appropriate behaviour. For example, if an agent was created with a utility-based
artificial intelligence to make decisions, a high utility value for actions that result in an environment

state with low “thirst” should lead to a decision to “drink”. This action can be performed by navigating

to an appropriate semantically annotated environment asset.

In the Unity game engine, we implemented this using physics collider. Once the collider is placed in the

scene, we associate it with a semantic animation using a string label. This is shown in Figure 28.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 26 of 49

Figure 28 Semantic description provided to a point of interest

Colliders are attached to agents which will trigger the animations. Unity engine lets crowd members

play animations through animation controllers [24], which can be accessed through a script. An example
of this can be found in Figure 29, which shows an animation controller that plays a walking animation

by default and can transition to a drinking animation. The script matches the semantic label in the

collider against the list of names of animations for the crowd member that has triggered the collider. If
an animation is successfully matched, the agents navigation component is paused, the animation plays

and then the agent resumes navigation, illustrated in a bare-bones Unity scene in Figure 30. In this
image, the crowd members collider intersects with the “drink” collider, which triggers the drink

animation to play, with a water fountain placed by the collider for illustration purposes.

Figure 29 Animation triggered on Unity-based physics collision detection

Figure 30 Animation triggered using Unity-based physics collision detection

This simple approach allows us to provide characters with a basic understanding of their immediate

environment using semantic labels.

4.4.4 Motion Stylization Implementation

The final addition to our AI toolset is a motion stylization module, which uses work completed by UPF

in D6.6 Motion Stylization Implementation. D6.6 outlines a framework that was written using OpenGL

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 27 of 49

which calculates post-processed stylized poses by modifying joint rotations. We refer the reader to D6.6
for details of the algorithm.

We helped UPF to create a C# version of their motion stylization module, making it available as a Unity

component. The module is compatible with animations that can be imported in the Unity humanoid
configuration [25], which is part of the built-in Unity Mecanim animation system [26]. The algorithm
behaves in the same way to the WebGL implementation and the input and output parameters match

the WebGL implementation. Figure 31 - Figure 33 show the results of applying this module to a walk
animation in Unity, with the associated Unity interface in Figure 34.

Figure 31 Neutral pose Figure 32 "Valence" value altered Figure 33 "Shoulder factor" altered

Figure 34 Unity Interface for Stylization Parameters

We incorporated this interface into our framework by linking it to the semantic labels present in the

scene. This fits into our framework as part of the real-time (Unity) implementation, where behaviour is
determined and implemented using semantic information, displayed in Figure 35. The relationship

between the TCD modules and the UPF modules is displayed in Figure 36. We wrote a script that can
read in semantic data from the structured sources documented in Section 4.3.1 and calculate estimated

“mood” values based on the semantic data. The calculated “mood” parameters are then translated to
their corresponding parameters in the UPF pose stylizer to create dynamically calculated stylistic

animations.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 28 of 49

Figure 35 Stylistically modified animations are part of the real-time implementation

Figure 36 High-level flowchart showing how animations are stylized in the crowd simulation framework

4.4.5 Object Pooling for Runtime Creation and Destruction

This sub-section addresses runtime creation and destruction tools, which allow the user to create crowd

members while the scenario is already running. This is useful in cases where the end user may want to
create a never-ending “flow” of crowd members. Since there are a large number of components that

could potentially be added to each crowd member, documented in subsections 4.4.1 - 4.4.4, the runtime

creation of these members could lead to performance lags. This depends on Unity’s garbage collector,
which is responsible for allocation and deallocation of memory. Unity’s memory management system

uses a “stop-the-world” garbage collector, which pauses the program and then resumes following
collection. This leads to potential lags in the execution of the code, explained in the Unity documentation

[27]. ”Incremental” garbage collection [27] can alleviate these lags by breaking down large garbage

collection tasks into smaller micro-tasks. The execution of some of the smaller tasks can then be delayed
until necessary, smoothing out performance drops. We found this method is also unsuitable for our

task, since the creation and deletion of many crowd agents during run-time still led to large drops in
frames per second due to a reciprocal large number of micro tasks being generated.

We implemented the object pooling design pattern for the creation of crowd members to alleviate these
problems. Object pooling initialises crowd members in a “pool”, created at the start of run-time. This

ensures that any creation and deletion of members occurs without the intervention of the garbage
collector, which is traded-off against additional memory use. Any crowd members removed from the

running scene are returned to the pool, leading to improved performance.

For testing purposes, we spawned a crowd member with a simple mesh into a scene a varying number

of times using the both standard approach for spawning and our Object Pooling implementation. The
scene contained no geometry other than a ground plane, in order to record the frames per second of

the scene with minimal interference from external factors. We compared of frames per second for
crowd agents spawned through object pooling vs. the standard Unity technique, the outcome of which

is shown in Table 2 in Section 4.6.1.2. The table clearly shows a boost in start-up performance with

the object pooling implementation.

4.5 Use Cases

This sub-section describes three use cases, which demonstrate the capabilities of our crowd simulation
framework as an integrated system. They were chosen to internally estimate the versatility of our

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 29 of 49

system for realistic scenarios, significantly aiding development. We deliberately chose use-cases which
reflect the cases frequently identified as desirable in the literature.

4.5.1 Social Distancing in an Open Square

The COVID-19 pandemic has created a situation where the phenomenon of social distancing is globally

commonplace. Due to this, there is increased interest in designing spaces that can accommodate social
distancing. We chose a social distancing scenario as a use case due to its relevance and the value of

simulating this phenomenon without needing to involve real participants. This scene is comparable to
other commonly modelled crowd scenes in open spaces, such as the Hajj pilgrimage [28].

We used an environment model taken from a previous project developed by TCD, named Metropolis

[10]. This is a high-fidelity virtual representation of the TCD campus, with a rich and diverse set of

assets. Figure 37 and Figure 38 show the environment model without any crowd members.

Figure 37 Top View of Metropolis

Figure 38 The main square in Metropolis

We provide a description of some of the steps taken to create the social distancing scene, which make

use of the tools described in this document:

1. Semantic data for this environment was available from the DublinCity LiDAR dataset [29], [30]. We

wrote a script to register the LiDAR model with the Metropolis model. We then exported the door

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 30 of 49

locations of the registered LiDAR model and created semantically annotated objects at the door

positions which mark them as feasible start/spawn locations for crowd members. This process is

shown in Figure 39 - Figure 41.

Figure 39 Metropolis model registered with DublinCity LiDAR data using CloudCompare

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 31 of 49

Figure 40 Semantic labels for LiDAR data

Figure 41 Door locations semantically annotated from labelled dataset (cube shows physical location) using the

registered models in Figure 39

2. We used the animation database search tool in section 4.3.2 to identify and import suitable

animations. These included animations that match the descriptions “walk”, “idle” and “run”,

demonstrated in Figure 42 and Figure 43. Figure 43 shows the animations imported with the

“humanoid” template in Unity Game Engine.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 32 of 49

Figure 42 Semantically annotated walk animations searched for.

Figure 43 Walk animations imported to Unity scene.

3. We placed crowd members at their starting points. They were partitioned into “static” and “mobile”

groups. The static groups represent irresponsible citizens who are loitering and not following social

distancing guidelines and the members in the mobile groups can move around and do follow the

guidelines. Figure 44 shows the static groups in initially placed in the Metropolis front square scene.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 33 of 49

Figure 44 Static groups placed in scene

4. We created goal points and configured obstacles to be used with the potential field module. Static

crowd members were treated as obstacles to ensure they would be avoided for social distancing

purposes, shown in Figure 45. The purple circles in Figure 45 are visualisations of the repulsive

forces attached to the static crowd members.

5. Paths were calculated and visualised for each agent using the potential field module, also shown in

Figure 45. The repulsive forces, visualised with purple circles, push away the agents path. Three

goal locations are specified, which first guides the crowd member to a water fountain, then through

the Campanile arch and finally bring the crowd member mid-way up the central path. The path is

visualised in yellow in Figure 45.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 34 of 49

Figure 45 Potential field configured and visualised, with auto-generated sample path for one crowd member

visualised

6. A component to perform local avoidance was added to the mobile crowd members and a global

local avoidance manager was created. The local avoidance radius can be specified, as shown in

Figure 46.

Figure 46 Local avoidance module of crowd member with 2-unit radius as a pre-set for distancing

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 35 of 49

Figure 47 RVO2 global manager to keep track of and update crowd member position and velocity

7. Semantic animation triggers were created at suitable locations, including photograph points, water

fountains and observation points. The associated animations were configured in the corresponding

animation controllers. Figure 48 shows a crowd member interacting with a “drink” semantic

animation trigger, which was placed in front of a water fountain. Once the animation has been

triggered, the crowd member can continue on their path, illustrated in Figure 49.

Figure 48 Crowd member triggers semantic "drink" animation

Figure 49 Once animation has played, the crowd agent continues

8. The real-time stylistic animation component in Section 4.4.4 was attached to crowd members whose

animations needed to be altered.

9. We repeated parts of steps 1-9 as often as was necessary until the scene looked “believable”.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 36 of 49

Once each of these steps were carried out, we ran the scene. Figure 50 - Figure 52 show some results
of the completed scene.

Figure 50 Completed social distancing scene top view

Figure 51 A still from the final social distancing crowd scene

Figure 52 A still from the final social distancing crowd scene

4.5.2 Pedestrian Scene

Our second use case describes a generic pedestrian scene, which is frequently used as a development
and evaluation platform for crowd simulation research [17], [31], [32]. We made use of the Love and

Fifty Megatons (LAFM) [11] assets for this scene, developed and released for research purposes by

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 37 of 49

Filmakademie (FA). We deemed the assets suitable for our pedestrian use-case as they contain a long
street with side-streets and obstacles such as benches and trees. This offers an ideal way to test high-

level navigation capabilities. Figure 53 and Figure 54 show the environment model without any crowd
members.

Figure 53 LAFM asset top view

Figure 54 LAFM street view

We implemented this scene in a manner like the first, which the reader may refer to for the steps to
reach the desired results. Figure 55 – Figure 57 show some stills of the end result for this scene.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 38 of 49

Figure 55 Pedestrian scene top view

Figure 56 A still from the completed Pedestrian scene

Figure 57 A still from the completed Pedestrian scene

4.5.3 Commuter Scene

Our final use-case is a commuter scene. As with the other use-cases, this is a general scene which

made it easy to informally evaluate performance and identify inadequacies while developing the system.

We chose this scene to complement the pedestrian scene, since they are semantically similar – in both
scenes crowd members move along a pavement to a destination. This allowed us to test the re-targeting

capabilities of our system. We chose to use assets developed as part of D6.3, which were semantically
labelled using the DublinCity LiDAR data set [29], [30]. We took advantage of the pipeline described in

D6.3, which allowed us to process the semantic assets to create a useable environment in Unity. Figure
58 and Figure 59 show the environment model without any crowd members. The scene is colour coded

by the semantic asset label, where Orange = Building, Red = Ground, Grey = Sidewalk, Green =

Vegetation.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 39 of 49

Figure 58 LiDAR scene, generated using the pipeline documented in D6.3

Figure 59 Street view of LiDAR scene.

The steps to implement this scene differ to that for the previous two, since we re-targeted the existing
pedestrian crowd to this scene. We outline the re-targeting steps here:

1. This scene already has semantic labels, noted above. These were processed using the semantic

data annotation module in 4.3.1 to provide JSON files according to a set schema. The colours in

the scene correspond to: Building – Orange, Ground – Red, Sidewalk – Grey, Vegetation – Green.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 40 of 49

2. Each of the pedestrians were exported from the pedestrian scene and then imported into this scene.

For Unity-to-Unity retargeting, this can simply be done via drag-and-drop. We anticipate that an

extension of our work could specify a general serialization method, based on the USD format [33].

3. We imported additional animations for this scene that could not be re-targeted from the pedestrian

scene. We also created extra crowd members that could not be re-targeted for the pedestrian

scene.

4. For each of the pedestrians, we updated the configuration of the potential field by specifying the

positions of the start and goal locations, as well as any obstacle locations. We also updated the

position of semantic animation triggers as well as their associated animations.

5. We removed any unnecessary components for the re-targeted crowd members.

6. We calculated and visualised paths for each agent using the potential field module. We repeated

parts of steps 3-9 as often as was necessary until the scene looked subjectively “believable”.

Figure 60– Figure 62 show some stills while running this scene.

Figure 60 Completed re-targeted crowd simulation for LiDAR scene

Figure 61 Completed re-targeted crowd simulation for LiDAR scene

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 41 of 49

Figure 62 Completed re-targeted crowd simulation for LiDAR scene

4.6 Metrics and Evaluation

This section presents a set of metrics devised to give an end user an idea of how the system performs
during run-time, as well as a plan for evaluating the framework. The evaluation is presented in two

main parts:

1. Laboratory testing of quantitative metrics (system stress testing and FPS/memory).

2. A plan for an expert review of the of the tools documented in this deliverable by external

professionals.

4.6.1 Evaluation Metrics and Methods for Laboratory Testing

The objective run-time performance of the modules developed in our system was recorded on a system

in a research lab in Trinity College Dublin, where the frames per second and computation time by the

system were recorded for a simple scene described in Section 4.6.1.2. The parameters varied as a part
of this testing and their corresponding outputs are listed in Table 2 to Table 5. These tests were carried

out to report the average performance that can be expected by the system in real-world usage. The

specifications of the machine used to run the tests are reported in Table 1.

4.6.1.1 Software and Hardware Specifications

We recorded the metrics in the subsequent sections using the following specifications:

Table 1 Hardware and Software specifications of PC used for evaluation

4.6.1.2 Stress Testing

We used Unity’s in-built profiler to analyse the performance of number of crowd members in scene with

regards to the modules’ frames per second and computation time to estimate their individual

Hardware/ Software Component Specification/ Version

CPU Intel Core i7-6700K Processor 4.0 GHz

GPU

GeForce RTX 2080 Super (Base clock:

1650 MHz, 8 Gb of GDDR6 Memory and

3,072 CUDA cores)

Motherboard Alienware 01NYPT

System Memory DDR4 32 Gb

Operating System Windows 10 Home

IDE Visual Studio 2017 Version 15.9.17

Game Engine Unity version 2018.4.12f1 (LTS)

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 42 of 49

performance. A basic crowd scene was created and the components we created were turned on and
off. We then recorded the in-built Unity profiler output, which breaks down performance by component.

We have considered only the major profiler attributes that cause impact to the performance for the
stress testing (eg: Animation Triggers depend on both animation and physics; however, animation’s

overhead dominates as compared to physics). The measurements ignore the arbitrary quality of both

the environment and the crowd member and only report on the performance of individual components.

Table 2 A comparison of time taken to load a basic scene using Object Pooling as opposed to the standard
approach

Table 3 Stress testing results for Stylistic animations and Animation triggers

Table 4 Stress testing results for Navigation

Number of crowd members in scene

Stylistic

Animations,

Animation

Triggers

(Animation

Profiler)

 100 500 1000 5000 10000 20000

Computation

Time (ms)
0.49 1.55 3.21 17.32 33.75 66.34

FPS 3500 920 630 60 32 14

Number of crowd members in scene

Navigation

Component

(Script

Profiler)

 100 500 1000 5000 10000 20000

Computation

Time (ms)

3.17 9.63 11.75 69.38 145.65 273.70

FPS 275 125 80 14 3 < 1

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 43 of 49

Table 5 Stress testing results for Local Avoidance

Since our toolset provides the standalone potential field module to calculate the paths of crowd
members, we also report on metrics associated with this module to give the end user an idea of

expected performance. We developed our toolset so that computation is done before runtime, in

anticipation of large crowd scenes that may require the majority of the system’s runtime resources for
rendering, collision detection, etc. This is not a necessity and the potential field path computation can

be carried out at runtime instead if desired. This computation is performed asynchronously in our Unity
implementation, which means that the user can continue developing the scene while paths are

calculated in the background, minimising the overhead associated with this approach. For other systems

that may use this module during run-time, we provide Table 6 as a guideline for expected performance.
The two primary factors affecting performance are the distance to the goal and the number of repulsors

in the field, which are varied. The repulsors were equally spaced between the start location and the
goal location. Table 6 implies that a large amount of time is spent on initialisation of parameters, which

could be a future optimisation.

Table 6 Seconds taken to calculate a path using the potential field module as a function of distance to goal and
number of repulsors present.

 Number of crowd members in scene

Local

Avoidance

(Physics

Profiler)

 100 500 1000 5000 10000 20000

Computation

Time (ms)

0.11 0.23 0.31 0.71 0.86 1.03

FPS 930

0

5800 3700 2500 1800 1200

 Distance to goal location

Number of repulsors

present in potential

field

 10 15 30 80 200

1 0.93863 0.96933 0.931959 0.944465 0.930965

2 1.057215 1.062002 1.029763 1.129277 1.417194

3 1.05236 1.042283 1.062729 1.18819 1.475051

4 1.15563 1.06063 1.072493 1.215221 1.620668

5 1.260802 1.146646 1.158097 1.327577 1.750601

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 44 of 49

Figure 63 Graph of seconds taken to calculate a path using the potential field module as a function of distance to
goal and number of repulsors present.

4.6.2 Description of Methodology for Expert Review

The aim of the expert study is to evaluate the time saving achieved by the crowd simulation tools

developed by TCD for the SAUCE project, in comparison to Unity’s built in tools. We hypothesise that

our tool offers a time saving greater than 50% as compared to the default Unity tools. We will break
down the time saving task-by-task mentioned in Section 4.6.4, which will allow us to identify the

common areas of crowd simulation for which the developed toolset offers an advantage over the default
tool set. This will enable us to provide an unbiased and structured evaluation of the crowd simulation

work that we have done as part of the SAUCE project and ensure that we can meet requirements for

the self-assessment plan set out in SAUCE D1.2 Self-Assessment plan [34]. The collected data will be
statistically analysed and used to draw conclusions on our hypothesis for the potential time saving. A

more detailed breakdown of the information that will be recorded is provided in section 4.6.5.

4.6.3 Modifications Due to Covid-19 Pandemic

Due to safety concerns in light of the Covid-19 pandemic, participants will not be invited in the V-SENSE
lab to conduct the expert review, and as an alternative, arrangements have been made to conduct the

study remotely. The whole procedure of the remote study is expected to take 10 weeks in total. 4
weeks out of those 10 weeks have been designated for recruitment of Subject Matter Experts (SME)

[35] and the remote studies will be carried out in the remaining 6 weeks. The expert review will be
conducted on a system in the V-SENSE lab of Trinity College Dublin, with the participants connecting

to the system using a remote access software such as Teamviewer or Anydesk. Participants will be

provided with the same system to minimise the number of external variables which can lead to
inconsistent results. Participants will be provided with access to the system using a temporary password,

and a team member will be online with them, available for remote support in case any assistance is
required. We will consider Subject Matter Experts (SME) who will be recruited through word of mouth

through existing contacts in the industry, relevant social media channels and direct contact through

freelancing websites. The results of this expert review will be included in SAUCE deliverables D8.4

Report on Experimental Production Scenario Results and D8.5 Combined Evaluation Report.

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 45 of 49

4.6.4 Steps Involved in Expert Review

The study will follow a two-step strategy. The first involves creating a simulated crowd scene. The

second involves retargeting the crowd to a semantically similar scene. We will ask the users to generate
a crowd simulation using our toolset in a random 50% of the experiments (Approach A), and the

remaining users will be instructed to use the default tools provided by Unity Game Engine (Approach

B) to develop a similar crowd scene. Time measurements will be noted as described in section 4.6.2.

The approaches will be marked with letters (A or B) to prevent any bias amongst the subjects.

Further, they will be provided with two documents:

1. A document which contains a high-level description/story for both scenes (Scene A & Scene B)

2. A document which provides the ordered steps the participants will have to complete. This serves
as a suggestive guide on how to successfully develop the crowd simulation in Scene A and

retarget it to Scene B.

The documents will be dependent on the approach assigned to the respective participant. Additionally,

depending on that approach, participants will be given a brief video tutorial on how they can develop
a crowd simulation for the study. We will then describe the experiment and show them the interface

that they will be using, which is Unity Game Engine. The tasks in the steps document are a

decomposition of the larger task of creating a simulated crowd. They will be allowed to ask questions
about how they can complete these tasks. Specific information on what the result they should work

towards will also be provided. We will then inform them that the experiment is starting, and they will
be provided remote access to a machine in the V-SENSE office in TCD, which they will be using to

complete the tasks. We will then start a timer and begin recording the screen, keystrokes and mouse

clicks on the machine. The high-level tasks that the participants will need to complete are as follows:

1. Asset import and preparation

2. Creation of each crowd member type (random, goal-oriented, static)
3. Divide the agents into groups according to behaviour and attach associated navigation

components as necessary
4. Configure non-static agents with navigation components

5. Configure animations for each of the agents

6. Run the simulation and modify parameters as necessary until the result is met

Once the user has completed the experiment, they will press a button which will stop the timer and
terminate the screen recording session. They will then be asked to complete a subjective UMUX (The

Usability Metric for User Experience Questionnaire) [36] to evaluate Usability and a UEQ (User

Experience Questionnaire) [37] to evaluate User Experience of the provided system. The purpose of
recording the UMUX and UEQ responses is to compare the qualitative performance of our toolset as

compared to the default Unity tools. Qualitative performance measurements provides us with data
related to subjective experience of the participants, and this feedback is useful for improving the user

experience of the participants.

4.6.5 Measurements

For each participant, we will be measuring and recording the following information during this

experiment:

1. Time on task for each of the steps 1-6 identified in section 4.6.4, calculated from the recording
of the screen.

2. Keystrokes and mouse clicks throughout the course of the experiment.

3. The result achieved by each participant, in the form of a Unity Scene file.

A screening expert self-identification questionnaire will be presented to the users to determine the skill
level of the participant. As discussed in section 4.6.3, only self-identified experts will be allowed to

participate in the study. Once the user study begins, we will collect the keystrokes and mouse clicks so
that we can record any periods of inactivity (e.g. if the user goes to the bathroom) so that they can be

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 46 of 49

subtracted from the overall time taken. We will record this data in order to report on the time saving
gained by using our tools. We will also be recording the data for each of the fields in the UMUX

questionnaire and the UEQ questionnaire that each participant will be asked to fill in on the completion
of the experiment. We will save the final scene file containing the developed crowd in order to ensure

a level of consistency between participants. All this data will be created and saved internally on a TCD

computer, via a remote access link. Each of the sessions will be anonymised with a randomly assigned

ID.

5 Conclusion

This work has served as an investigation into how crowds can be developed to be reusable across

scenes that are semantically similar. There are numerous avenues for exploration on this front and we

note here that we only investigated a subset. Our approach to high-level behaviours took an approach
referred to in the literature as hybrid [38], but other approaches are promising in relation to semantic

data use, for example microscopic approaches. We view the use of semantic data in crowd scenes to
generally be a strong candidate for further research and we anticipate that this work will serve as a

proof-of-concept which may spur further work in this area and for virtual productions in general.

We found that developing crowd simulations in general is currently taken as a specific endeavour and

that they typically require the use of niche software (e.g. Massive, Menge, Goalem, Legion). Many of
these are proprietary and cannot be integrated across platforms, which presents an immediate

challenge in that boiler-plate code often needs to be written to achieve some relatively simple and
routine tasks. This also creates a problem in that these approaches and technologies can be difficult to

extend and customize, which creates a barrier for smaller studios with limited resources. To this end,

we intend that this document and the associated techniques may help guide smaller studios in
developing crowd simulation pipelines and that it may offer a clear strategy for developing crowds that

can be repurposed, saving time and money. We plan that smaller studios would be the primary users
of the technologies in this deliverable, although we hope that the scope could extend as a proof-of-

concept for larger studios.

Our experience of actually creating development crowd scenes was a largely repetitive one, which led

us to break down the process into individual modules, documented in Section 4. For each logical part
of the process, we created a module which carries out a specific action. These steps are demonstrated

in the use cases in Section 4.5. We advocate this modular approach, as it provides flexibility when
creating crowd members. When some undesired behaviour is encountered, we can simply turn off the

relevant component. We would encourage future work to treat crowd simulation as a set of

components, so that some cross-platform modular pipelines may start to emerge. A good example of
this is the RVO-2 local avoidance library [23], which is available in multiple languages and can be easily

integrated with many different platforms.

We found that using semantic data to drive crowd behaviour can be an effective time saving tool,

especially when the semantic data is readily available and in a suitable format. This implies that to some
degree, this work depends on the automation of the semantic classification of assets, which is an active

research topic in the SAUCE project, covered by Work Package 4. This leads to the conclusion that a
crowd simulation using semantic data is possible, as documented in the deliverable, but it depends on

the quality and detail of the semantic data. AI has seen a recent surge in research and now many
mature and robust methods exist for tasks such as path-finding and general decision-making.

Techniques such as reinforcement learning (RL) allow an autonomous agent to make decisions based

on the perception of its surroundings, which we anticipate will become a more prominent method in
crowd simulation research once semantically annotated assets replace regular assets.

A significant hurdle that we experienced in this work was devising a sufficient set of metrics to

adequately evaluate the effectiveness of the tool set that we developed. Generally speaking, the overall

quality of an arbitrary crowd simulation is something that cannot be measured objectively, since some
aspects depend on subjective qualities. As noted in section 4.1, many publications don’t attempt to

define directly how to evaluate the overall quality of a crowd simulation can be measured, but rather

http://www.massivesoftware.com/
http://gamma.cs.unc.edu/Menge/
http://golaem.com/
https://www.bentley.com/en/products/product-line/building-design-software/legion-simulator

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 47 of 49

break it down into components that can be more easily evaluated [12]. Since we are primarily interested
in the time-saving offered by our toolset through re-targeting, we created an evaluation strategy that

attempts to isolate this time saving. This will be recorded and statistically analysed in a user evaluation
study, which will be reported later in the SAUCE project (D8.4 Report on Experimental Production
Scenario Results and D8.5 Combined Evaluation Report). The planning of the evaluation of this work

was a non-trivial task and we intend that the methods and metrics devised can be built upon in future
work to move towards a standard conventional set of test scenarios and metrics for researchers involved

in crowd simulation.

6 References

[1] N. &. A. J. &. K. M. &. B. N. Pelechano, Simulating Heterogeneous Crowds with

Interactive Behavior, A K Peters/CRC Press, 2016.

[2] A. Bielik, “'I Am Legend': Apocalypse Now in Manhattan,” 14 12 2007. [Online].

Available: https://www.awn.com/vfxworld/i-am-legend-apocalypse-now-manhattan.

[Accessed 5 6 2020].

[3] D. Greer, “https://www.rocketstock.com/blog/crowd-control-the-vfx-behind-dynamic-

crowd-simulations/,” 16 10 2015. [Online]. Available:

https://www.rocketstock.com/blog/crowd-control-the-vfx-behind-dynamic-crowd-

simulations/. [Accessed 4 6 2020].

[4] “Massive Crowds in World War Z,” 2017. [Online]. Available:

http://www.massivesoftware.com/wwz.html. [Accessed 4 6 2020].

[5] [Online]. Available: http://www.massivesoftware.com/. [Accessed 4 6 2020].

[6] “Menge Home,” 2013. [Online]. Available: http://gamma.cs.unc.edu/Menge/. [Accessed

2 6 2020].

[7] “Welcome to uCrowds,” [Online]. Available: https://ucrowds.com/. [Accessed 5 6 2020].

[8] N. . Kraayenbrink, J. . Kessing, T. . Tutenel, G. d. Haan, F. . Marson, S. R. Musse and

R. . Bidarra, “Semantic crowds: reusable population for virtual worlds,” Procedia

Computer Science, vol. 15, no. , pp. 122-139, 2012.

[9] European Commission, “Smart Asset re-Use in Creative Environments | SAUCE

Project | H2020 | CORDIS | European Commission,” 2020. [Online]. Available:

https://cordis.europa.eu/project/id/780470. [Accessed 14 June 2020].

[10] C. O. a. C. Ennis, “Metropolis: multisensory simulation of a populated city,” in

International Conference on Games and Virtual Worlds for Serious Applications, 2011.

[11] Filmakademie, “Love And Fifty Megatons,” [Online]. Available:

https://www.loveandfiftymegatons.com/. [Accessed 1 6 2020].

[12] N. A. J. M. a. B. N. I. Pelechano, “Virtual Crowds: Methods, Simulation, and Control,”

Animation, Synthesis Lectures on Computer Graphics and Animation, pp. 1-176, 2008.

[13] N. I. B. R. B. J. C. A. J. M. S. J. &. P. M. S. Badler, “Real Time Virtual Humans,” in

Proceedings ofThe Fifth Pacific Conference on Computer Graphics and Applications,

1997.

[14] U. Technologies, “Unity Real-Time Development Platform | 3D, 2D VR & AR

Visualizations,” 2020. [Online]. Available: https://unity.com/. [Accessed 14 June 2020].

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 48 of 49

[15] R. E. da Silva, J. Ondrej and A. Smolic, “Using LSTM for Automatic Classification of

Human Motion Capture Data,” in 14th International Conference on Computer Graphics

Theory and Applications 2019, 2019.

[16] K. M. L. S. H. G. A. K. W. B. L. E. K. a. S. T. Howie Choset, Principles of Robot Motion,

MIT Press, 2005.

[17] S. C. Z. P. Adrien Treuille, “Continuum crowds,” ACM Transactions on Graphics, vol.

25, no. 3, 2006.

[18] A. Zeileis, “strucchange: Testing, Monitoring, and Dating Structural Changes,” [Online].

Available: https://cran.r-project.org/web/packages/strucchange/index.html. [Accessed 6

6 2020].

[19] J. a. P. P. Bai, “Computation and analysis of multiple structural change models,”

Journal of Applied Econometrics, vol. 18, no. 1, pp. 1-22, 2002.

[20] Unity Technologies, “Unity - Manual: Inner Workings of the Navigation System,” 2020.

[Online]. Available: https://docs.unity3d.com/Manual/nav-InnerWorkings.html.

[Accessed 14 June 2020].

[21] M. C. L. a. D. M. Jur van den Berg, “Reciprocal velocity obstacles for real-time multi-

agent navigation,” in IEEE Int. Conf. Robotics and Automation, Pasadena, 2008.

[22] J. v. d. B. S. J. G. S. C. S. P. M. C. L. a. D. M. Jamie Snape, “Independent navigation

of multiple robots and virtual agents,” in 9th Int. Conf. Autonomous Agents and

Multiagent Systems, Ontario, 2010.

[23] J. Snape, “RVO2 Library - What is New in RVO2 Library,” 2012. [Online]. Available:

http://gamma.cs.unc.edu/RVO2/documentation/2.0/whatsnew.html. [Accessed 14 June

2020].

[24] Unity Technologies, “Unity - Manual: Animation Controller,” 2020. [Online]. Available:

https://docs.unity3d.com/Manual/class-AnimatorController.html. [Accessed 14 June

2020].

[25] Unity Technologies, “Unity - Manual: Working with humanoid animations,” 2020.

[Online]. Available:

https://docs.unity3d.com/560/Documentation/Manual/AvatarCreationandSetup.html.

[Accessed 14 June 2020].

[26] Unity Technologies, “Unity - Manual:,” 2020. [Online]. Available:

https://docs.unity3d.com/462/Documentation/Manual/MecanimAnimationSystem.html.

[Accessed 14 June 2020].

[27] Unity Technologies, “Unity - Manual: Understanding Automatic Memory Management,”

2020. [Online]. Available:

https://docs.unity3d.com/Manual/UnderstandingAutomaticMemoryManagement.html.

[Accessed 14 June 2020].

[28] S. J. G. B. Z. a. D. M. S. Curtis, “Virtual Tawaf: A case study in simulating the behavior

of dense, heterogeneous crowds,” in IEEE International Conference on Computer

Vision Workshops (ICCV Workshops), Barcelona, 2011.

[29] I. &. R. S. &. R. A. &. C. A. &. S. A. &. D. S. R. &. R. M. Zolanvari, “DublinCity:

Annotated LiDAR Point Cloud and its Applications.,” in British Machine Vision

Conference, (2019).

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD 49 of 49

[30] D. &. A. S. &. V. A.-V. &. T.-H. L. &. G. H. Laefer, “2015 Aerial Laser and

Photogrammetry Survey of Dublin City Collection Record,” 2017.

[31] M. a. K. L. a. G. M. Sung, “Fast and Accurate Goal-Directed Motion Synthesis for

Crowds,” in Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, Los Angeles, 2005.

[32] D. L. B. A. J. a. T. W. Helbing, “Self-Organized Pedestrian Crowd Dynamics:

Experiments, Simulations, and Design Solutions.,” in Transportation Science, 2005.

[33] Disney Pixar, “Introduction to USD,” 2017. [Online]. Available:

https://graphics.pixar.com/usd/docs/index.html. [Accessed 15 June 2020].

[34] SAUCE, “D1.2 Self-Assessment Plan,” [Online]. Available:

https://www.sauceproject.eu/dyn/1560417885361/D1.2-Extract.pdf.

[35] K. K. William W. Cotterman, “User Cube: A Taxonomy of End Users.,” Communications

of the ACM (COMMUN ACM) , 1989.

[36] K. Finstad, “The Usability Metric for User Experience,” Interacting with Computers

(INTERACT COMPUT) , 2010.

[37] M. Schrepp, “User Experience Questionnaire,” [Online]. Available: https://www.ueq-

online.org/.

[38] K. S. S. a. S. H. Ijaz, “A Survey of Latest Approaches for Crowd Simulation and

Modeling Using Hybrid Techniques,” in Proceedings of the 2015 17th UKSIM-AMSS

International Conference on Modelling and Simulation, 2015.

[39] Unity Technologies, “Unity - Manual: NavMesh Agent,” 2020. [Online]. Available:

https://docs.unity3d.com/Manual/class-NavMeshAgent.html. [Accessed 14 June 2020].

[40] U. Technologies, “Unity - Manual: Building a NavMesh,” 2020. [Online]. Available:

https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html. [Accessed 14 June 2020].

	OLE_LINK1
	OLE_LINK2
	OLE_LINK19
	OLE_LINK20

