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1 Executive Summary 

This deliverable represents the total contribution to WP6T6: Crowd Scene Synthesis. It builds on the 

foundation laid in D6.3: A working framework to handle relationship contexts between scene and 
people. The overarching goal of this deliverable is to document a toolset and framework that leverages 

state-of-the-art techniques for the automated prototyping of re-usable crowd simulations. Our toolset 
has been developed in close collaboration with project partners. To aid development and evaluation, 

we devised a number of use cases which demonstrate the core technologies developed and 

demonstrate the versatility and potential of the toolset.  

The approach taken was modular, where we break down the process of developing a general crowd 

simulation into various modules, with interfaces between modules defining the system. An overview of 
the approach is provided in Section 4.2. The modules separate behaviour from physical attributes, 

allowing for re-use of behaviours. These modules comprise our main contribution and were 
implemented in the Unity game engine, but we have documented them in anticipation of their use in 

other platforms. The toolset strongly promotes reuse of crowds through semantic data, which 

corresponds to a key theme of the SAUCE project. This has allowed us to collaborate with other project 

partners to leverage their developed technologies. 

In relation to the Self-Assessment Plan (D1.2), this deliverable is a complete report on the work 
done for WP6T6. The complete design and architecture of the system are provided and the details of 

the technical implementation are given in Section 4. We report on metrics and the planned evaluation 

in Section 5. This deliverable builds on the work initially set out in D6.3 and ties together work outlined 
in D4.1 Semantic Search Framework, D6.6 Motion Stylization Implementation , D5.3 Basic capability to 
enable asset transform and will contribute to D8.4 Report on Experimental Production Scenario Results 
and D8.5 Combined Evaluation Report. 
 
The evaluation of this toolset by independent users has been planned in Section 4.6 and the details will 

be reported in  D8.4 Report on Experimental Production Scenario Results and D8.5 Combined Evaluation 
Report. Preliminary feedback from project partners who have been involved in the pilot study suggests 
that this work has strong potential for use in virtual production pipelines. Our own experience of this 

work suggests that this is a promising avenue for crowd simulation research. We anticipate that this 
work may be extended and lead to further attempts to bridge the gap between recent advances in AI 

and the current approach in the virtual production industry, which can often be heavily manual. Figure 

1 - Figure 3 show some stills that display some results achieved when using our toolset. 

 

 
Figure 1 An example crowd scene developed using our toolset 
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Figure 2 

 

Figure 3 

 

2 Background 

The generation of crowd scenes for the film traditionally involves the hiring of extras, which can be 

costly from a monetary, time and organisational viewpoint. An in-depth discussion for the reasons 

behind this is provided in [1, p. 218] (we paraphrase from Section 12.1.1): The magnitude of the cost 
of crowd extras was aptly demonstrated in the film Waterloo, which employed over 15,000 extras but 

failed to even recoup its production costs. In more recent years, crowds in film scenes have turned 
virtual, with well-known examples including I am Legend [2], The Lord of the Rings [3] and World War 

Z [4]. A variety of standalone software and software suites have come into existence to help automate 

this task (Massive [5], Menge [6], UCrowds [7], etc.). These tools have also been used for general 
crowd simulations, which encompass evacuation scenarios, footfall modelling and pedestrian modelling 

for self-driving cars. In the last number of years, it has been identified that there is a demand for 
crowds that are reusable [8]: this means that the development of a crowd for one scene should not be 

a once-off process, but rather be something that can be adjusted to fit other similar scenarios, saving 
time and effort. This is explicitly described as a research aim in the SAUCE proposal abstract: “Real-
time control systems for authoring animated content using smart assets, automatically synthesizing 
new scenes from existing ones and integrating smart assets into virtual production scenarios “. The 
main scope of this deliverable is to outline the toolset we have created, which can be used to develop 

crowds that are reusable through semantic data attached to their environments. 
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3 Introduction 

This document outlines how the use of semantic data related to the environment can drive crowd 

behaviour, providing a way to de-couple crowd behaviour from their environment. This promotes a core 
concept of the SAUCE project: “using smart assets which are adaptive to context, purpose, the user 
and the production environment” [9].  The Background chapter has already introduced some of the key 

motivation behind the work. The remaining chapters are structured as follows: 

The rest of this chapter sets out the main objectives and goals of the work and outlines the methodology 

behind our approach. 

Chapter 4 (Implementation of the Crowd Simulation Prototyping System) provides the details of the 

implementation and the reasoning behind our approach. It is broken down into: 

• System Overview and Architecture, which outlines the high-level design of the system, split into 

modular parts. 

• Scene Processing and Annotating, which gives details of how scenes are processed and annotated 
with semantic data.  

• Artificial Intelligence for Crowd Simulation, which gives the details of the technical implementation 

of the artificial intelligence modules developed to simulate crowd behaviour. 

• Use Cases, which provides tangible examples of how the toolset can be effectively used for various 
scenarios. This builds on the use case initially proposed in D6.3 using LiDAR data. We outline three 

use cases: 
 

1. The first use case employs the use of assets developed in a previous crowd simulation project 

completed at TCD called Metropolis [10] and depicts a dense crowd scene in a large, open main 
square. Our toolset is used to demonstrate how “social distancing” can be implemented in this 

scene. We also leverage the semantic environment labels subsequently gathered for this 
environment, outlined in detail in D6.3. 

2. The second use case entails a scene in which groups make their way along a street, avoiding 

benches, streetlights and other pedestrians in a natural manner. The scene uses assets 
developed by Filmakademie as part of an experimental production entitled “Love and Fifty 

Megatons” [11].  
3. The final use case is the one initially described in D6.3. A group of commuters make their way 

down a street. This scene uses the LiDAR-constructed environment in D6.3. We re-target the 
crowd developed in the second use case to this scene, demonstrating the time-saving potential 

of our approach. 

 

• Metrics and Evaluation, which contains the details of a planned user study, which will provide a 
way of objectively evaluating the effectiveness of the toolset. We also state which metrics we will 

collect and how we propose to collect them. 

In the final Conclusions chapter, we highlight ways in which this work could be built upon and offer 

some conclusions on the important aspects of the system. 

 

3.1 Main Objectives and Goals, Relation to Self-Assessment Plan (D1.2) 

The primary objective of this deliverable is summarised in WP6T6: “to employ semantic description of 
the assets and scenes to understand the relationship, context, and the distribution of people (crowd 
agents) in the scene. The process involves using this information to populate a new scene with crowd 
agents in believable situations and have them demonstrate expected behaviour.”  This was motivated 

by a gap in existing technologies, identified by the SAUCE consortium. 

 
The primary objective can be broken down into the following constituents, which we used to guide the 

progression of the work:  
1. A systematic way to create or add semantic data at the scene level. 

2. A systematic way to link semantic data to the crowd behaviour. 

3. A systematic way to link crowd behaviour to meshes and animations. 
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The main goal of this work is to develop a system that offers a time-saving when developing a working 
prototype of a crowd simulation, achieved by re-targeting an existing crowd simulation. This is described 

in D1.2: Self-Assessment Plan: 

• Advance on the state of the art: ability to automatically populate new scenes based on examples 
taken from previously created and annotated scenes that are semantically similar, meeting 

metrics for quality evaluation defined in D6.8. 

• Technology improvement: 50% time saving when editing the scene or quality of synthesis 

useful for pre-visualization or real-time application. 

We comment on these goals and objectives in Section 4.6 and Section 5 in relation to our evaluation 

plan. We will conclude on whether we have achieved the goals and objectives once the evaluation of 
the system has been carried out and this will all be reported on in D8.4 Report on Experimental 
Production Scenario Results, and D8.5 Combined Evaluation Report. 
 

3.2 Relationship to Other Deliverables 

This deliverable makes use of the technologies developed in following SAUCE deliverables: 

 

• D6.3: A working framework to handle relationship contexts between scene and people 

• D4.1 Semantic Search Framework 

• D6.6 Motion Stylization Implementation 

• D5.3 Basic capability to enable asset transform  

 
This deliverable will be evaluated in WP8 as part of: 
 

• D8.4 Report on Experimental Production Scenario Results 

• D8.5 Combined Evaluation Report 
 

4 Implementation of the Crowd Simulation Prototyping System 

4.1 Methodology 

Our methodology broadly follows the reasoning presented in [12]. A crowd simulation should “expect 
to simulate the visual texture and contextual behaviours of groups of seemingly sentient beings” (P.1). 

A crowd can typically be described at a high-level by a global set of requirements (e.g. evacuation), 

but it is also noted that “computational methods for modelling one set of requirements may not mesh 
well with good approaches to another”. (P.1). This intuitively means there is no “silver bullet” for 

computational crowd simulation: one approach will typically not work well for every realistic situation. 
This has led to several key general features being identified for a typical crowd, which reflect the areas 

in which research has addressed over recent years: Appearance, Function, Time, Autonomy and 
Individuality. [13]. These can be thought of as the primary axes along which crowd simulation research 

is carried out. This deliverable (and the SAUCE project as a whole) is focussed on the re-use of smart 

assets, therefore from this list we primarily address autonomy, time and function: 

• Autonomy refers to how much manual intervention must be applied to control a crowd 
member’s behaviour. A high level of autonomy implies little manual intervention. This can 

typically be achieved using artificial intelligence. 

• Time specifically refers to how much time is needed to update each frame of the simulation. 
Real-time simulation is typically characterised as 24 fps or higher, in accordance with human 

perception. 

• Function refers to how well a character can be calibrated to do certain tasks. This typically 

manifests itself in the rig configuration, cognitive models, joint limits, and other abilities such 
as animation-retargeting.  

 
Intuitively, a re-usable real-time crowd system must have high levels of crowd member autonomy, 

must operate at > 24fps and must provide sufficient functionality per character to produce groups of 
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“seemingly sentient beings”. These three aspects allow us to address and achieve the sub-objectives 
in Section 3.1 in a structured manner. 

 
In creative productions, individuality and appearance are addressed as a final step once the scene has 

been finalised, since they do not significantly affect the configuration of the scene. Once a crowd scene 

has been prototyped and finalised, higher-quality meshes and models are typically used for the fully-
rendered production version. We therefore do not treat them as core aspects of this work, even though 

they appear on the list above.  
 

Given this high-level approach, we provide details in Section 4 as to how we applied this methodology 
to the development process. 

 

4.2 System Overview and Architecture 

The crowd scene synthesis system developed to address the objectives for this deliverable was designed 
in a modular fashion to promote re-use and ease of creation of custom crowd simulations. This section 

serves as a guide in how these modular pieces work together, with subsequent sections providing the 

details of the technologies developed for each of the modules. As mentioned in the introduction section, 
we identified autonomy, time and function as key aspects in this work, which are reflected in the system 

architecture.  
 

The high-level system architecture is shown in Figure 4. This figure is not exhaustive, but it shows the 
main components that have been developed for this deliverable. We emphasize the split between the 

scene and crowd members, which is a key factor for re-usability. The interfaces between modules 

developed for each of these are shown here. We factored out the semantic configuration of both the 
scene and people since configuration can be done as a pre-processing step. 
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Figure 4 An overview of the crowd simulation framework 

This diagram factorises a crowd scene into four main parts, which reflect the sub-objectives identified 

in Section 3.1. These correspond to the sub-figures shown in Figure 5. 
 

1. The physical scene with accompanying semantic data. 
2. The processing and configuration of the semantic scene data. 

3. Crowd member physical parameters and animations. 

4. The crowd behaviour. 
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Figure 5 The main constituents of our crowd simulation framework 

 
These parts feed into the real-time crowd simulation, which we have implemented using the Unity game 
engine [14]. 

 

4.3 Scene Processing and Annotating 

Since our planned approach leverages the use of semantic data, we developed tools to help process 

existing scenes to annotate them with semantic data. We also developed several Unity-specific tools to 
which automate some tedious parts of running the simulation.  

 

4.3.1 Semantic Data Annotation Using JSON-LD with Contexts 

AI algorithms can be highly complex and difficult to interpret, therefore, to avoid nonsensical output 
that can be difficult to debug, the input parameters are required to be uniformly structured and well-

defined. A key challenge presented by this work is how to transform the available semantic data into a 

uniformly structured and well-defined form that can be used as input to AI algorithms. This is illustrated 
in Figure 6, where the question mark represents the process of transforming arbitrary data sources to 

a common structure for AI modules. 

 

 
Figure 6 Semantic Data must be transformed to common structure for AI modules. 

 
A tangible example of this is shown in Figure 7. Two different sources of semantically annotated data 

need to be transformed to a common structure to feed into an AI module. Although the labels are 
similar, the data have different hierarchies and labels. 
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Figure 7 Semantic data must be structured in a common format when input to AI modules 

 
We implemented this using JSON, with schemas and contexts. The main reasons for this are that JSON 

is readable and writable by both machines and humans, libraries exist in many languages to parse it 
and it can be serialized and distributed with minimal overhead. Consistency is also ensured using 

schemas, which can enforce constraints. The main drawback is that schemas must be manually defined. 
 

To preserve the continuity and coherence of the work completed as part of SAUCE, we based our 

implementation on D4.1 Smart Search Framework, which in turn is based on D2.1 and D2.3. D4.1 
documents the implementation of a mature and robust framework which supports the creation, 

extension and re-use of existing vocabularies and ontologies for arbitrary semantically annotated assets. 
We refer the reader to this D4.1 for an in-depth exposition. The Smart Search framework provides the 

ability to download assets along with related structured semantic data. We use the same structure, 

which is implemented using JSON with context provided by schemas. 
 

We developed a simple tool in the Unity editor which automates the creation of JSON files if they don’t 
exist, for any asset in a given scene. The user can edit the parameters of the generated JSON files as 

desired directly from the Unity editor, or they can edit the file externally through a text editor or 
programmatically. The tool also allows JSON files to be validated against a schema inside the editor to 

ensure the structural integrity of the data. The data can be validated and then read by the AI algorithms 

to ensure that the input is valid. Section 4.4 outlines the main AI algorithms used, which require a well-
defined input due to the high number of parameters.  

 
A simple example is shown in Figure 8 and Figure 9 below. For an arbitrary scene, we would like to 

specify spawn locations and obstacle locations for our crowd scene using semantic labels. For each 

asset in the scene, it is possible to create an associated JSON file with default parameters shown in the 
schema in Figure 8. The user can then update the file to specify whether the asset should be treated 

as a spawn location, an obstacle or undefined. This can easily be done programmatically. An example 
of a configured JSON file corresponding to this schema is shown in Figure 9. This data can trivially be 

used for any other platform by simply reading the JSON file. When running the crowd simulation, we 

can parse the scene for all the assets with the “Spawner” label and then read in their corresponding 
spawn location. This is a simple example, but it demonstrates how this approach facilitates a consistent 

way to format data which can be used for any platform. This means that if the same scene were to be 
implemented using Houdini, for example, the scripts to actually use the spawn locations and obstacles 
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would have to be re-written, but the interface remains consistent so the data does not need to be 
transformed or modified from the json file, simply read.  

 

  
Figure 8 An example of a schema for annotating Figure 9 An example of a json file with semantic data 

objects as spawn locations or obstacles 

4.3.2 Semantic Animation Search User interface 

A main theme of SAUCE research is the development of semantic descriptors to promote the re-use of 
assets. In line with this, work was published by researchers at TCD [15] which is able to accurately and 

automatically classify animation data according to four classes: “bending down”, “jumping”, “running” 

and “walking”. SAUCE deliverables 7.1 and 7.2 outline a detailed system for semantically annotating 
and storing numerous modes of data, including animation, which is actively used by multiple SAUCE 

partners. As part of our contribution, we have designed a lightweight standalone database querying 
tool that can query semantic labels and conveniently export animations to Unity. 

 

We anticipate that for the sake of prototyping, the viewer and exporter will offer a significant time 
saving. For demonstration purposes, we have coupled this tool with animations from databases that 

have been liberally licenced for research purposes: the CMU Graphics Lab Motion Capture Database 
and Filmakademie’s PHS motion library. Both databases contain data that has already been semantically 

labelled and the CMU library has additional semantic labels from the classifier in [15]. The viewer allows 

for the addition of arbitrary new animation sources. This provides an interface from the animation 
database to the Crowd Agent Manager, highlighted in red in Figure 10. 
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Figure 10 The Animation DB querying tool provides a way to link the Animation DB to the Crowd Agent Manager. 

 

The database viewer was written with small animation studios in mind. While designing the viewer, we 
considered that these studios may not have well-designed databases to structure their data but may 

use a simple directory system to categorise their assets. This led to the decision to assume that the 

data is stored in a local file system. The semantic data is assumed to be held in a csv file, which also 
contains metadata such as the origin of the asset and licencing restrictions. The idea is that files can 

be uploaded to the file system with all their associated data and metadata in the csv file, which 
effectively acts as an indexing system. The upload and deletion of files to the local system with 

associated metadata in the csv file can easily be scripted. 
 

The viewer assumes that the file metadata exists in a tabular format in the csv file - there are no 

restrictions on the number of fields, but the file name is mandatory. This is analogous to a primary key 
in a standard database system. The user can search each field present in the csv file. Animations in the 

table can be visualised (Figure 12), with the caveat that they must either be in Biovision .bvh format. 
The viewer was written using the R Shiny web development framework, which also means it can easily 

be configured to run on a server.  

 
Figure 11 shows the sample search fields for the user interface. The user can create filters for each of 

these search fields. The figure demonstrates the user applying a filter for animations with a description 
that matches or partially matches “walk”. Once they have applied the necessary filters, they can 

visualise animations to ensure they are suitable for their application. Figure 12 shows a sample frame 
of a “walk” animation from the CMU database. Finally, once the user is satisfied with the animations, 

they can add them to an export table, shown in Figure 13. This export table records all animations to 

be downloaded. Once the user presses the “download selected” button in Figure 13, the animations in 
this table are retrieved from the file system, zipped and made available in the users “downloads” folder, 

which can then typically be directly imported as a batch into the users simulation engine (Unity in our 
case). 
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Figure 11 Each metadata field can be searched. 

 

 
Figure 12 Animations can be viewed inline. 
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Figure 13 Animations can be added to an export list which can be directly imported to Unity or any other 

simulation engine.  

4.4 Artificial Intelligence for Crowd Simulation 

We implemented a number of Artificial Intelligence modules as part of our framework. These provide 

the logic to imbue crowd members with believable characteristics. These include: 

• A standalone module to calculate calibrated paths to a goal destination around obstacles. 

• A module which implements local avoidance among crowd members. 

• A module which triggers animations among crowd agents based on semantic labels. 

• A module which can stylize animations, which uses work completed by UPF in D6.6 Motion 

Stylization Implementation. 

 

We provide the implementation details of these modules in the next sub-section. The Use Cases 
presented in Section 4.5 provides tangible examples of how these modules can be used to rapidly 

prototype crowd scenes. 

 

4.4.1 Potential Fields for High-Level Navigation 

High-level navigation here refers to the calculation of a viable path from one point to another, taking 

into account soft constraints. It does not directly consider artefacts such as potential collisions, which 
are treated separately as a post-processing step. The criteria for high-level navigation are derived from 

the objectives and goals identified in Section 3.1: 

 
1. The system must perform in real-time. 

2. The system must provide autonomy: excessive manual intervention is not desired.  
3. The system must provide adequate functionality to allow real-time prototyping.  

 
We evaluated a number of approaches based on existing literature and chose the potential field 

approach as the most suitable based on the identified criteria. The potential field implementations for 

crowd simulation outlined in [16] and [17] provide a basis for our own implementation. 

 
The implementation of the potential field module was written as a standalone application in python, 
due to its abundance of scientific libraries and rapid prototyping time. The language-agnostic details 

are presented here. For an in-depth exposition on potential fields in AI, we refer the reader to Chapter 
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4 of [16], which our implementation is based on. Modifications made to reflect the differences in 
simulated human motion to robot motion. 

 

4.4.1.1 Specifying the Potential Function 

A potential field can be represented as a function of spatial coordinates  that is 

differentiable. We are concerned only with the two-dimensional case for crowds: . The 

potential can be thought of as energy, with the gradient interpreted as force, meaning that each crowd 
agent can use the potential field to calculate a force to be applied to it.  

 

The potential at any given point in  is calculated as the sum of an arbitrary number of differentiable 

functions of the form , i.e.  . This allows the potential function to be configured to 

incorporate ‘hills’ and ‘troughs’, which affects how a crowd member moves in the field. Given this 

potential function, each crowd member can follow a path ‘downhill’ by following the negated gradient 
of the potential function. Figure 14 illustrates an example of a potential field in 3 dimensions, while 

Figure 15 shows the projection of this surface onto 2 dimensions in the form of a contour plot. 

 

 
Figure 14 An example of a potential field. 

 
Figure 15 2D projection of potential field with contour plot 

  

 
The end-user can specify each  to be used in the potential field, however this is typically a highly 
tedious. We provide 2-D Gaussian distributions to specify the , since it is very easy to specify the 

scale, location and shape of these functions. Figure 16 and Figure 17 show how the covariance matrix 
can be narrowed along each axis, which means they can effectively approximate different shapes. Note 

that Figure 16 can approximate a rectangle when projected onto two dimensions, whereas Figure 17 

approximates a circle. Gaussian distributions also have the advantage of having a strong local effect 
but a weak global effect. This means that they can be defined to intuitively specify the agent's path 

locally.  

 

https://www.codecogs.com/eqnedit.php?latex=U%3A%20%5Cmathbb%7BR%7D%5Em%20%5Cto%20%5Cmathbb%7BR%7D#0
https://www.codecogs.com/eqnedit.php?latex=U%3A%20%5Cmathbb%7BR%7D%5E2%20%5Cto%20%5Cmathbb%7BR%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbb%7BR%7D%5E2#0
https://www.codecogs.com/eqnedit.php?latex=U_i%3A%20%5Cmathbb%7BR%7D%5E2%20%5Cto%20%5Cmathbb%7BR%7D#0
https://www.codecogs.com/eqnedit.php?latex=U%20%3D%20%5Csum%20U_i#0
https://www.codecogs.com/eqnedit.php?latex=U_i#0
https://www.codecogs.com/eqnedit.php?latex=U_i#0
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Figure 16 Gaussian with covariance matrix   

 

 

 

 
 

Figure 17 Gaussian with covariance matrix   

 

Given an arbitrary potential function, , a gradient descent algorithm can be applied to derive 
a path, as noted above. Once again, we refer the reader to [16]  for details in this context. However, 

there are a number of drawbacks to “vanilla” gradient descent:  

1. It may not succeed in finding a path to the goal if local minima are present in the potential 
function.  

2. If there is a slight “ridge”, it may not succeed in finding a path to the goal.  
3. Gradient descent requires a step-size which is small enough to avoid skipping over ridges and 

minima/maxima, but not so small as to cause excessive computation time. 

 
Common remedies to these issues are to ensure there is only a single global minima, to discretize space 

and to incorporate backtracking/random walks. Since we do not intend to apply this algorithm for true 
navigation in an unknown scenario, we instead propose the following:  

 

• The main objective of crowd simulation is to create a group of “seemingly sentient beings”. 

• The chief concern for high-level navigation is therefore to create a believable path.  

• Believability is a subjective measure; therefore, we must provide a highly configurable path 
instead of a single “correct” path. If the user is not satisfied with the calculated path, they 

should be able to modify it until it is believable. 
• The agents must be able to use the calculated paths in real-time. 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bpmatrix%7D%206%20%26%200%20%5C%5C%5C%5C%200%20%26%201%20%5C%5C%5C%5C%20%5Cend%7Bpmatrix%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bpmatrix%7D%206%20%26%200%20%5C%5C%5C%5C%200%20%26%206%20%5C%5C%5C%5C%20%5Cend%7Bpmatrix%7D#0
https://www.codecogs.com/eqnedit.php?latex=U%20%3D%20%5Csum%20U_i#0
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• The paths should provide a realistic and smooth trajectory to satisfy the believability criteria. 

 
Based on these principles, we modified the vanilla gradient descent algorithm so that for a “reasonable” 

input, a path is usually successfully calculated. This path can be easily configured by altering the 
potential function using gaussian functions. The key modifications to vanilla gradient descent to 

accommodate this are:  

 

• The addition of a momentum term to alleviate the local minima issues. 
• The addition of a term to guide the crowd member in the direction of the goal, in case the 

gradient guides the crowd member away from the goal.  

• A post-processing step to calculate a piecewise linear function that reduces the number of 

points on the trajectory, providing a motion that does not oscillate. 
 

The algorithm for calculating the path using a modified gradient descent is shown in Figure 18. 

 
Figure 18 A modified Gradient Descent for path-finding with a potential field 

 

4.4.1.2 Standalone Executable Interface Specification 

We implemented this algorithm as a standalone executable. The interface requires the following input 
parameters:  

 

Parameter 
Name 

Description 

Goal Position The (x,y) location of the goal position. 

Goal Potential 

Coefficient 

A coefficient which scales the potential of the goal position (higher values 

mean stronger attraction). 

Start Position  The (x,y) location of the start position.  
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Repulsor Locations The (x,y) positions of the Gaussian repulsors . 

Repulsor Standard 
Deviations 

The covariance matrix of each repulsor (in 1-1 correspondence with 
Repulsor Locations) representing the 2D "spread" of each repulsor. 

Repulsor Potential 
Coefficients 

The coefficients used to scale the calculated potential of the Gaussian 
repulsors. 

Attractor Locations The (x,y) positions of the Gaussian attractors. 

Attractor Standard 
Deviations 

The covariance matrix of each attractor (in 1-1 correspondence with 
Attractor Locations) representing the 2D "spread" of each repulsor.  

Attractor Potential 
Coefficients 

The coefficients used to scale the calculated potential of the Gaussian 
attractor. 

Timeout The maximum amount of time that can be used to find a path to the goal.  

 
The output is provided as a sequence of (x,y) points, leading from Start Position to Goal Position. A 

brief analysis of the performance of this standalone module is provided in Table 6. 

 

4.4.1.3 Waypoint Length Reduction via Post-Processing 

Once a suitable path for each crowd member has been calculated, they need to be able to calculate 
suitable velocities to traverse this path. Velocity updates can be disjointed if the points on the path are 

close together. We developed a waypoint length reduction algorithm to address this problem. 

 
The reduction of the number of waypoints for the calculated path is done via a post-processing step. 

This takes the sequence of (x,y) points and applies the following procedure: 
1. A piecewise linear model is desired to fit the data piecewise, for m+1 segments.  In order to 

fit the model, m breakpoints are required. There is a trade-off between the number of 
breakpoints, m, and the quality of the fit, measured by the Residual Sum of Squares (RSS). We 

allow the user to specify m as a proportion of the original number of points. 

2. We find the breakpoints using the R breakpoints function, found in the strucchange library [18] 
which is an implementation of the method found in [19]. This method is based on a dynamic 

programming approach and provides an estimate for the vector of breakpoints m. 
3. We then use these breakpoints to fit a piecewise linear model, which uses the breakpoints 

found in 2. This is done using the R segmented function from the segmented library. 

4. Finally, we use the linear model from 3 to provide estimates of the dependent variable at the 
breakpoints.  

 
A result of the application of this algorithm can be seen in Figure 19. 

 



 

D6.8_Crowd scene synthesis and metrics for quality evaluation_25062020_TCD   21 of 49 

 
Figure 19 The black line represents (x,y) points outputted by modified gradient descent. The red line represents 

the corresponding (x,y) points calculated by the piecewise linear regression, decreasing the number of (x,y) 
points on the path by a factor of ~20 

 

4.4.1.4 Interface With Semantic Data 

Section 4.3.1 outlines how we intend for semantic data to be used to drive the crowd behaviour. 

Instead of asking the user to specify every single parameter for the potential field path calculation, we 

created an interface between the path planning module and the semantic data annotation module. 
Specifically, we provide the user with a schema, which can be attached to scene assets. Once this 

schema has been used to create a JSON file, the path planning module can then either infer or directly 

read all the input values from this file.  
 

This has three key merits:  
1. It offers a significant time saving to the user by avoiding the manual specification of all 

parameters. 
2. It guarantees that the user has specified the data in the right format.  

3. It guarantees consistency in how the data should be formatted - if there is an issue with the 

input data, this will be detected before the path calculation begins. 
4. It promotes re-use: the schema and path-finding module can be re-used across scenes. 

 
The first is obvious but the other points are more subtle. Generally speaking, AI modules require a 

specific input in order to calculate an output. A frequent source of error is inputting data that is 

incorrectly in format or context: this is often summarized with the phrase “Garbage in, garbage out”. 
In order to avoid occurrences of this, we first validate any data that will be fed into the pathfinding 

module using the JSON schemas explained in Section 4.3.1. 
 

This was only partially carried out in Unity due to implementation complexities. The JSON schema is 

intended to reflect the user configurable input parameters. Future iterations of this work could build on 
this idea to develop a mature and robust interface. 

 

4.4.1.5 Potential Field Goal Chaining 

An obvious limitation of the above approach is that a path to an only single goal location can be 
calculated in advance. We anticipate that the user may know in advance that the crowd agent should 

move between sequential goal points. We offer a simple extension as follows: 

 

• The user may set out several goal points that are “chained” - they are assumed to be in 
sequential order.  
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• Specifically, we let the user specify a set of triples: <start_pointi, potential_fieldi, goal_pointi>. 

Each of the triples in the set is used to calculate a path from start_pointi to goal_pointi using 
potential_fieldi. It is required that start_pointi+1 is equal to goal_pointi, to ensure continuity.  

 
This is implemented by iteratively applying the path calculation (implemented as a standalone 
executable) to each triple, and then simply combining each of these paths together. The result of this 

can be seen in Figure 20, where the three sequential goal locations are shown in green and the repulsive 
forces are highlighted in purple. The calculated path is shown in yellow. The accompanying set of triples 

used in the configuration is shown in Figure 21. 

 

 
Figure 20 Goal locations are shown in green. Locations of repulsive forces are shown in purple. 

 
Figure 21 The configuration used to calculate the path displayed in Figure 20. Note that start_pointi+1 is equal to 

goal_pointi 

4.4.1.6 Waypoint Editing 

As mentioned throughout this deliverable in relation to path planning, a key aspect for our target end 

users is believability. To that end, we implemented a waypoint editing tool which allows the user to 
manually specify the positions of cached waypoints calculated by the potential field module if they are 

not fully satisfied with the automated results. Once the user has finished editing the waypoints in real-
time, they can save their updated positions to the cache. This allow real-time editing of the 

automatically generated path through the Unity interface. We implemented this in Unity by displaying 

the transforms of each waypoint using a “capsule” object, allowing the user to drag each to the desired 
position. This is demonstrated in Figure 22 - Figure 25, where edit mode is entered in Figure 23, the 

pre-calculated path is updated in real time in Figure 24 and then edit mode is exited and the updated 
path is saved in Figure 25.  
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Figure 22 Automated planned path displayed. 

 
Figure 23 Edit mode engaged 

 
Figure 24 Waypoint dragged to new position 

 
Figure 25 Updated path saved to cache and edit mode exited. 

4.4.1.7 Unity Implementation 

The complete integration of this module in Unity allows for paths to be automatically calculated in 
advance of running the simulation in Unity. We had the choice to either integrate this module to 

perform the calculations in real-time, or to carry them out in advance of the simulation run. We 

consciously chose to carry out the calculations in advance of the simulation run, for the following 
reasons: 

 

• Crowd scenes typically require a lot of resources for rendering and updating, so cutting down 

on any run-time computation is advantageous. 

 

• Calculating paths before run-time means that the user can check that they are suitable in 

advance of running the simulation. We implemented a real-time way-point editing tool, 

outlined in Section 4.4.1.6, to allow the user to update and save automatically calculated 

waypoints before run-time. 
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Once the crowd members configuration has been set in Unity, the configuration is read and the paths 
are automatically calculated and cached when the user clicks the “write path to file for selected 

agents” button in the navigation toolbar. This must be done in advance of running the simulation. If 
the user updates the configuration by manually moving around crowd members and repulsive forces, 

they will need to re-calculate the path by clicking the “write path to file for selected agents” button in 

the navigation toolbar again. Once the simulation is running, the cached paths for each crowd 
member are read and followed. They cannot be adjusted while the simulation is running. 

4.4.2 Local Avoidance Implementation 

The potential field path planning in Section 4.4.1 does not account for the fact that calculated paths 

may lead to conflicts – crowd members may collide while traversing. This problem is usually resolved 
by implementing a post-processing “local avoidance” algorithm. This has a large body of literature 

behind it and many mature, robust and efficient libraries have been implemented.  
 
Unity’s in-built Reciprocal Velocity Obstacles (RVO) library provides an implementation of local 
avoidance [20] . It does so by auto-assigning a collision avoidance radius and “avoidance priorities”. A 

higher priority means the associated game object will maintain its traversal speed to accommodate 
smooth navigation, while game objects with lower priorities “give way” and alter their traversal speeds 

to prevent collisions. 

 
This occasionally gives rise to an outlier scenario. The crowd members may undergo oscillations of their 

velocities [21]. If two crowd members are assumed to travel with velocities vA and vB respectively and 
possess overlapping paths, in order to avoid potential collisions, either crowd member A or crowd 

member B alters their velocities to v’A or v’B to let the other member pass. As their old velocities lead 
them directly to their goal positions, each then revert to their previous velocity. This process continues 

until either of the members have reached their destinations, leading to repeated oscillations in their old 

and new velocities. Due to the random sampling nature of RVO, this application of local avoidance 
sometimes causes the members to lock onto each other’s collision avoidance radius and not let the 

other pass, termed as a “reciprocal dance”. This issue prominently arises in high density of crowd 
members, specifically in regions with narrow passages due to the crowd members having a limited 

amount of space to navigate around each other and the velocities of each agent in proximity affecting 

local avoidance as highlighted in Figure 26. 
 

 
Figure 26 Example scenario that may lead to reciprocal dances 

 
This deadlock can be overcome by using the Reciprocal Velocity Obstacles 2 (RVO2) library [22], which 
is an iteration of the Reciprocal Velocity Obstacles (RVO) library [21]. RVO2 uses Optimal Reciprocal 

Collision Avoidance (ORCA) for local avoidance. It considers a global radius in the entire scene and 
keeps track of the agent's positions and velocities. This solution determines the agents that are in 

vicinity to one another globally and causes them to appropriately slow down. Under the library’s 
documentation [23], RVO2’s “ORCA defines velocity constraints with respect to other agents as half-

planes, and an optimal velocity is efficiently found using (two-dimensional) linear programming. In 

contrast, RVO Library 1.x uses random sampling to find a good velocity”. Figure 27 demonstrates a 
simple scene using the RVO2 library. 
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Figure 27 No deadlock scenarios observed 

 

Unity’s NavMesh Agent provides rudimentary components for navigation, namely, A* pathfinding and 

dynamic obstacle avoidance. These components are by default linked to the RVO component, that takes 
in the agent’s velocity to determine ideal local avoidance. Our implementation also allows an RVO2 

component to be attached to prevent the reciprocal dances and deadlock caused by the RVO library. 
Although the integration of RVO2 as an addon may impact performance due to basic calculations being 

performed by the in-built RVO and then overwritten by the RVO2 library, the RVO2 library provides  a 

typically better local collision avoidance and we found the trade-off to be worthwhile in scenarios 

involving large crowds. Details of the performance impact can be found in Table 3. 

 

4.4.3 Integration of Animation Triggers 

This sub-section reports a way to link semantic annotations in the scene with animations for crowd 
members, which provides a simple and scalable way to produce believable behaviour. 

 
Since we are dealing with crowd scene with potentially thousands of members for a real-time 

application, evaluating complex behaviour trees or action utilities for each agent threatens a significant 

drop in framerate. Although these approaches offer a high level of individuality and autonomy, which 
were identified as desirable traits in 8, they also often require extensive configuration which is not 

suitable for prototyping scenes with large crowds. In future iterations, we would ideally incorporate 
these approaches in an automated way for large scale crowds. Our chosen approach builds on the 

semantic theme of SAUCE. We describe the general steps and our Unity-specific implementation. 

 
Our framework allows animations for agents to be triggered via spatial cues. We detect when an 

agent has entered a specific region. This region has an associated semantic action – for example the 
region in front of a water fountain could have an association semantic “drink” action. Once the agent 

enters this region, if a “drink” animation is present among the set of animations it will pause the 
agents navigation component, play the animation and then resume the agents navigation component. 

The major advantage of this approach is that it is one-to-many: one semantic drink animation can 

trigger many different “drink” animations for different crowd members. We rely on semantic labelling 
for this to be carried out. A further advantage to this is that it allows agent to query semantic labels 

and then decide on appropriate behaviour. For example, if an agent was created with a utility-based 
artificial intelligence to make decisions, a high utility value for actions that result in an environment 

state with low “thirst” should lead to a decision to “drink”. This action can be performed by navigating 

to an appropriate semantically annotated environment asset. 

 
In the Unity game engine, we implemented this using physics collider. Once the collider is placed in the 

scene, we associate it with a semantic animation using a string label. This is shown in Figure 28.  
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Figure 28 Semantic description provided to a point of interest 

Colliders are attached to agents which will trigger the animations. Unity engine lets crowd members 

play animations through animation controllers [24], which can be accessed through a script. An example 
of this can be found in Figure 29, which shows an animation controller that plays a walking animation 

by default and can transition to a drinking animation. The script matches the semantic label in the 

collider against the list of names of animations for the crowd member that has triggered the collider. If 
an animation is successfully matched, the agents navigation component is paused, the animation plays 

and then the agent resumes navigation, illustrated in a bare-bones Unity scene in Figure 30. In this 
image, the crowd members collider intersects with the “drink” collider, which triggers the drink 

animation to play, with a water fountain placed by the collider for illustration purposes.  
 

                       
Figure 29 Animation triggered on Unity-based physics collision detection 

 

 

 
Figure 30 Animation triggered using Unity-based physics collision detection 

This simple approach allows us to provide characters with a basic understanding of their immediate 

environment using semantic labels. 

 

4.4.4 Motion Stylization Implementation 

The final addition to our AI toolset is a motion stylization module, which uses work completed by UPF 

in D6.6 Motion Stylization Implementation. D6.6 outlines a framework that was written using OpenGL 
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which calculates post-processed stylized poses by modifying joint rotations. We refer the reader to D6.6 
for details of the algorithm.  

 
We helped UPF to create a C# version of their motion stylization module, making it available as a Unity 

component. The module is compatible with animations that can be imported in the Unity humanoid 
configuration [25], which is part of the built-in Unity Mecanim animation system [26]. The algorithm 
behaves in the same way to the WebGL implementation and the input and output parameters match 

the WebGL implementation. Figure 31 - Figure 33 show the results of applying this module to a walk 
animation in Unity, with the associated Unity interface in Figure 34. 

 

  
 

Figure 31 Neutral pose Figure 32 "Valence" value altered Figure 33 "Shoulder factor" altered 

 

 
Figure 34 Unity Interface for Stylization Parameters 

 
We incorporated this interface into our framework by linking it to the semantic labels present in the 

scene. This fits into our framework as part of the real-time (Unity) implementation, where behaviour is 
determined and implemented using semantic information, displayed in Figure 35. The relationship 

between the TCD modules and the UPF modules is displayed in Figure 36. We wrote a script that can 
read in semantic data from the structured sources documented in Section 4.3.1 and calculate estimated 

“mood” values based on the semantic data. The calculated “mood” parameters are then translated to 
their corresponding parameters in the UPF pose stylizer to create dynamically calculated stylistic 

animations.  
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Figure 35 Stylistically modified animations are part of the real-time implementation 

 

 
Figure 36 High-level flowchart showing how animations are stylized in the crowd simulation framework 

 

4.4.5 Object Pooling for Runtime Creation and Destruction 

This sub-section addresses runtime creation and destruction tools, which allow the user to create crowd 

members while the scenario is already running. This is useful in cases where the end user may want to 
create a never-ending “flow” of crowd members. Since there are a large number of components that 

could potentially be added to each crowd member, documented in subsections 4.4.1 - 4.4.4, the runtime 

creation of these members could lead to performance lags. This depends on Unity’s garbage collector, 
which is responsible for allocation and deallocation of memory. Unity’s memory management system 

uses a “stop-the-world” garbage collector, which pauses the program and then resumes following 
collection. This leads to potential lags in the execution of the code, explained in the Unity documentation 

[27].  ”Incremental” garbage collection [27] can alleviate these lags by breaking down large garbage 

collection tasks into smaller micro-tasks. The execution of some of the smaller tasks can then be delayed 
until necessary, smoothing out performance drops. We found this method is also unsuitable for our 

task, since the creation and deletion of many crowd agents during run-time still led to large drops in 
frames per second due to a reciprocal large number of micro tasks being generated.  

 

We implemented the object pooling design pattern for the creation of crowd members to alleviate these 
problems. Object pooling initialises crowd members in a “pool”, created at the start of run-time. This 

ensures that any creation and deletion of members occurs without the intervention of the garbage 
collector, which is traded-off against additional memory use. Any crowd members removed from the 

running scene are returned to the pool, leading to improved performance.  
 

For testing purposes, we spawned a crowd member with a simple mesh into a scene a varying number 

of times using the both standard approach for spawning and our Object Pooling implementation. The 
scene contained no geometry other than a ground plane, in order to record the frames per second of 

the scene with minimal interference from external factors.  We compared of frames per second for 
crowd agents spawned through object pooling vs. the standard Unity technique, the outcome of which 

is shown in Table 2 in Section 4.6.1.2. The table clearly shows a boost in start-up performance with 

the object pooling implementation. 

 

4.5 Use Cases 

This sub-section describes three use cases, which demonstrate the capabilities of our crowd simulation 
framework as an integrated system. They were chosen to internally estimate the versatility of our 
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system for realistic scenarios, significantly aiding development. We deliberately chose use-cases which 
reflect the cases frequently identified as desirable in the literature.  

 

4.5.1 Social Distancing in an Open Square 

The COVID-19 pandemic has created a situation where the phenomenon of social distancing is globally 

commonplace. Due to this, there is increased interest in designing spaces that can accommodate social 
distancing. We chose a social distancing scenario as a use case due to its relevance and the value of 

simulating this phenomenon without needing to involve real participants. This scene is comparable to 
other commonly modelled crowd scenes in open spaces, such as the Hajj pilgrimage [28]. 

 
We used an environment model taken from a previous project developed by TCD, named Metropolis 

[10]. This is a high-fidelity virtual representation of the TCD campus, with a rich and diverse set of 

assets. Figure 37 and Figure 38 show the environment model without any crowd members. 
 

 
Figure 37 Top View of Metropolis 

 
Figure 38 The main square in Metropolis 

 
We provide a description of some of the steps taken to create the social distancing scene, which make 

use of the tools described in this document: 

 

1. Semantic data for this environment was available from the DublinCity LiDAR dataset [29], [30]. We 

wrote a script to register the LiDAR model with the Metropolis model. We then exported the door 
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locations of the registered LiDAR model and created semantically annotated objects at the door 

positions which mark them as feasible start/spawn locations for crowd members. This process is 

shown in Figure 39 - Figure 41. 

 

 
Figure 39 Metropolis model registered with DublinCity LiDAR data using CloudCompare 
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Figure 40 Semantic labels for LiDAR data 

 
Figure 41 Door locations semantically annotated from labelled dataset (cube shows physical location) using the 

registered models in Figure 39 

 

2. We used the animation database search tool in section 4.3.2 to identify and import suitable 

animations. These included animations that match the descriptions “walk”, “idle” and “run”, 

demonstrated in Figure 42 and Figure 43. Figure 43 shows the animations imported with the 

“humanoid” template in Unity Game Engine. 
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Figure 42 Semantically annotated walk animations searched for. 

 

 
Figure 43 Walk animations imported to Unity scene. 

 
3. We placed crowd members at their starting points. They were partitioned into “static” and “mobile” 

groups. The static groups represent irresponsible citizens who are loitering and not following social 

distancing guidelines and the members in the mobile groups can move around and do follow the 

guidelines. Figure 44 shows the static groups in initially placed in the Metropolis front square scene. 
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Figure 44 Static groups placed in scene 

 

4. We created goal points and configured obstacles to be used with the potential field module. Static 

crowd members were treated as obstacles to ensure they would be avoided for social distancing 

purposes, shown in Figure 45. The purple circles in Figure 45 are visualisations of the repulsive 

forces attached to the static crowd members. 

 

5. Paths were calculated and visualised for each agent using the potential field module, also shown in 

Figure 45. The repulsive forces, visualised with purple circles, push away the agents path. Three 

goal locations are specified, which first guides the crowd member to a water fountain,  then through 

the Campanile arch and finally bring the crowd member mid-way up the central path. The path is 

visualised in yellow in Figure 45.  
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Figure 45 Potential field configured and visualised, with auto-generated sample path for one crowd member 

visualised 

 

6. A component to perform local avoidance was added to the mobile crowd members and a global 

local avoidance manager was created. The local avoidance radius can be specified, as shown in 

Figure 46.  

 

 
Figure 46 Local avoidance module of crowd member with 2-unit radius as a pre-set for distancing 
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Figure 47 RVO2 global manager to keep track of and update crowd member position and velocity 

7. Semantic animation triggers were created at suitable locations, including photograph points, water 

fountains and observation points. The associated animations were configured in the corresponding 

animation controllers. Figure 48 shows a crowd member interacting with a “drink” semantic 

animation trigger, which was placed in front of a water fountain. Once the animation has been 

triggered, the crowd member can continue on their path, illustrated in Figure 49. 

 

 
Figure 48 Crowd member triggers semantic "drink" animation 

 
Figure 49 Once animation has played, the crowd agent continues 

8. The real-time stylistic animation component in Section 4.4.4 was attached to crowd members whose 

animations needed to be altered. 

9. We repeated parts of steps 1-9 as often as was necessary until the scene looked “believable”. 
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Once each of these steps were carried out, we ran the scene. Figure 50 - Figure 52 show some results 
of the completed scene.   

 

 
Figure 50 Completed social distancing scene top view 

 
Figure 51 A still from the final social distancing crowd scene 

 
Figure 52 A still from the final social distancing crowd scene 

4.5.2 Pedestrian Scene 

Our second use case describes a generic pedestrian scene, which is frequently used as a development 
and evaluation platform for crowd simulation research [17], [31], [32]. We made use of the Love and 

Fifty Megatons (LAFM) [11] assets for this scene, developed and released for research purposes by 
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Filmakademie (FA). We deemed the assets suitable for our pedestrian use-case as they contain a long 
street with side-streets and obstacles such as benches and trees. This offers an ideal way to test high-

level navigation capabilities. Figure 53 and Figure 54 show the environment model without any crowd 
members.  

 

 
Figure 53 LAFM asset top view 

 

 
Figure 54 LAFM street view 

 
We implemented this scene in a manner like the first, which the reader may refer to for the steps to 
reach the desired results. Figure 55 – Figure 57 show some stills of the end result for this scene. 
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Figure 55 Pedestrian scene top view 

 

 
Figure 56 A still from the completed Pedestrian scene 

 

 
Figure 57 A still from the completed Pedestrian scene 

4.5.3 Commuter Scene 

Our final use-case is a commuter scene. As with the other use-cases, this is a general scene which 

made it easy to informally evaluate performance and identify inadequacies while developing the system. 

We chose this scene to complement the pedestrian scene, since they are semantically similar – in both 
scenes crowd members move along a pavement to a destination. This allowed us to test the re-targeting 

capabilities of our system. We chose to use assets developed as part of D6.3, which were semantically 
labelled using the DublinCity LiDAR data set [29], [30]. We took advantage of the pipeline described in 

D6.3, which allowed us to process the semantic assets to create a useable environment in Unity. Figure 
58 and Figure 59 show the environment model without any crowd members. The scene is colour coded 

by the semantic asset label, where Orange = Building, Red = Ground, Grey = Sidewalk, Green = 

Vegetation. 
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Figure 58 LiDAR scene, generated using the pipeline documented in D6.3 

 
Figure 59 Street view of LiDAR scene. 

 
The steps to implement this scene differ to that for the previous two, since we re-targeted the existing 
pedestrian crowd to this scene. We outline the re-targeting steps here: 

 

1. This scene already has semantic labels, noted above. These were processed using the semantic 

data annotation module in 4.3.1 to provide JSON files according to a set schema. The colours in 

the scene correspond to: Building – Orange, Ground – Red, Sidewalk – Grey, Vegetation – Green. 
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2. Each of the pedestrians were exported from the pedestrian scene and then imported into this scene. 

For Unity-to-Unity retargeting, this can simply be done via drag-and-drop. We anticipate that an 

extension of our work could specify a general serialization method, based on the USD format [33].  

3. We imported additional animations for this scene that could not be re-targeted from the pedestrian 

scene. We also created extra crowd members that could not be re-targeted for the pedestrian 

scene.   

4. For each of the pedestrians, we updated the configuration of the potential field by specifying the 

positions of the start and goal locations, as well as any obstacle locations. We also updated the 

position of semantic animation triggers as well as their associated animations. 

5. We removed any unnecessary components for the re-targeted crowd members. 

6. We calculated and visualised paths for each agent using the potential field module. We repeated 

parts of steps 3-9 as often as was necessary until the scene looked subjectively “believable”. 

 
Figure 60– Figure 62 show some stills while running this scene. 
 

 
Figure 60 Completed re-targeted crowd simulation for LiDAR scene 

 

 
Figure 61 Completed re-targeted crowd simulation for LiDAR scene 
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Figure 62 Completed re-targeted crowd simulation for LiDAR scene 

 

4.6 Metrics and Evaluation 

This section presents a set of metrics devised to give an end user an idea of how the system performs 
during run-time, as well as a plan for evaluating the framework. The evaluation is presented in two 

main parts:  

1. Laboratory testing of quantitative metrics (system stress testing and FPS/memory). 

2. A plan for an expert review of the of the tools documented in this deliverable by external 

professionals. 

 

4.6.1 Evaluation Metrics and Methods for Laboratory Testing 

The objective run-time performance of the modules developed in our system was recorded on a system 

in a research lab in Trinity College Dublin, where the frames per second and computation time by the 

system were recorded for a simple scene described in Section 4.6.1.2. The parameters varied as a part 
of this testing and their corresponding outputs are listed in Table 2 to Table 5. These tests were carried 

out to report the average performance that can be expected by the system in real-world usage. The 

specifications of the machine used to run the tests are reported in Table 1. 

4.6.1.1 Software and Hardware Specifications 

We recorded the metrics in the subsequent sections using the following specifications: 

 

 
Table 1 Hardware and Software specifications of PC used for evaluation 

 

4.6.1.2 Stress Testing 

We used Unity’s in-built profiler to analyse the performance of number of crowd members in scene with 

regards to the modules’ frames per second and computation time to estimate their individual 

Hardware/ Software Component Specification/ Version 

CPU Intel Core i7-6700K Processor 4.0 GHz 

 

GPU 

 

GeForce RTX 2080 Super (Base clock: 

1650 MHz, 8 Gb of GDDR6 Memory and 

3,072 CUDA cores) 

Motherboard Alienware 01NYPT 

System Memory DDR4 32 Gb 

Operating System Windows 10 Home 

IDE Visual Studio 2017 Version 15.9.17 

Game Engine Unity version 2018.4.12f1 (LTS) 
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performance. A basic crowd scene was created and the components we created were turned on and 
off. We then recorded the in-built Unity profiler output, which breaks down performance by component. 

We have considered only the major profiler attributes that cause impact to the performance for the 
stress testing (eg: Animation Triggers depend on both animation and physics; however, animation’s 

overhead dominates as compared to physics). The measurements ignore the arbitrary quality of both 

the environment and the crowd member and only report on the performance of individual components. 

 

Table 2 A comparison of time taken to load a basic scene using Object Pooling as opposed to the standard 
approach 

 

 

Table 3 Stress testing results for Stylistic animations and Animation triggers 

 

 
Table 4 Stress testing results for Navigation 

 

 
Number of crowd members in scene 

Stylistic 

Animations, 

Animation 

Triggers 

(Animation 

Profiler) 

 100 500 1000 5000 10000 20000 

Computation 

Time (ms) 
0.49 1.55 3.21 17.32 33.75 66.34 

FPS 3500 920 630 60 32 14 

 

 
Number of crowd members in scene 

Navigation 

Component 

(Script 

Profiler) 

 

 100 500 1000 5000 10000 20000 

Computation 

Time (ms) 

3.17 9.63 11.75 69.38 145.65 273.70 

FPS 275 125 80 14 3 < 1 
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Table 5 Stress testing results for Local Avoidance 

Since our toolset provides the standalone potential field module to calculate the paths of crowd 
members, we also report on metrics associated with this module to give the end user an idea of 

expected performance. We developed our toolset so that computation is done before runtime, in 

anticipation of large crowd scenes that may require the majority of the system’s runtime resources for 
rendering, collision detection, etc. This is not a necessity and the potential field path computation can 

be carried out at runtime instead if desired. This computation is performed asynchronously in our Unity 
implementation, which means that the user can continue developing the scene while paths are 

calculated in the background, minimising the overhead associated with this approach. For other systems 

that may use this module during run-time, we provide Table 6 as a guideline for expected performance. 
The two primary factors affecting performance are the distance to the goal and the number of repulsors 

in the field, which are varied. The repulsors were equally spaced between the start location and the 
goal location. Table 6 implies that a large amount of time is spent on initialisation of parameters, which 

could be a future optimisation.  

 

 

Table 6 Seconds taken to calculate a path using the potential field module as a function of distance to goal and 
number of repulsors present. 

 

 

 Number of crowd members in scene 

Local 

Avoidance 

(Physics 

Profiler) 

 

 100 500 1000 5000 10000 20000 

Computation 

Time (ms) 

0.11 0.23 0.31 0.71 0.86 1.03 

FPS 930

0 

5800 3700 2500 1800 1200 

 

 Distance to goal location 

Number of repulsors 

present in potential 

field 

 10 15 30 80 200 

1 0.93863 0.96933 0.931959 0.944465 0.930965 

2 1.057215 1.062002 1.029763 1.129277 1.417194 

3 1.05236 1.042283 1.062729 1.18819 1.475051 

4 1.15563 1.06063 1.072493 1.215221 1.620668 

5 1.260802 1.146646 1.158097 1.327577 1.750601 
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Figure 63 Graph of seconds taken to calculate a path using the potential field module as a function of distance to 
goal and number of repulsors present. 

 

 

4.6.2 Description of Methodology for Expert Review 

The aim of the expert study is to evaluate the time saving achieved by the crowd simulation tools 

developed by TCD for the SAUCE project, in comparison to Unity’s built in tools. We hypothesise that 

our tool offers a time saving greater than 50% as compared to the default Unity tools. We will break 
down the time saving task-by-task mentioned in Section 4.6.4, which will allow us to identify the 

common areas of crowd simulation for which the developed toolset offers an advantage over the default 
tool set. This will enable us to provide an unbiased and structured evaluation of the crowd simulation 

work that we have done as part of the SAUCE project and ensure that we can meet requirements for 

the self-assessment plan set out in SAUCE D1.2 Self-Assessment plan [34]. The collected data will be 
statistically analysed and used to draw conclusions on our hypothesis for the potential time saving. A 

more detailed breakdown of the information that will be recorded is provided in section 4.6.5. 
 

4.6.3 Modifications Due to Covid-19 Pandemic  

Due to safety concerns in light of the Covid-19 pandemic, participants will not be invited in the V-SENSE 
lab to conduct the expert review, and as an alternative, arrangements have been made to conduct the 

study remotely. The whole procedure of the remote study is expected to take 10 weeks in total. 4 
weeks out of those 10 weeks have been designated for recruitment of Subject Matter Experts (SME) 

[35] and the remote studies will be carried out in the remaining 6 weeks. The expert review will be 
conducted on a system in the V-SENSE lab of Trinity College Dublin, with the participants connecting 

to the system using a remote access software such as Teamviewer or Anydesk. Participants will be 

provided with the same system to minimise the number of external variables which can lead to 
inconsistent results. Participants will be provided with access to the system using a temporary password, 

and a team member will be online with them, available for remote support in case any assistance is 
required. We will consider Subject Matter Experts (SME) who will be recruited through word of mouth 

through existing contacts in the industry, relevant social media channels and direct contact through 

freelancing websites. The results of this expert review will be included in SAUCE deliverables D8.4 

Report on Experimental Production Scenario Results and D8.5 Combined Evaluation Report. 
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4.6.4 Steps Involved in Expert Review 

The study will follow a two-step strategy. The first involves creating a simulated crowd scene. The 

second involves retargeting the crowd to a semantically similar scene. We will ask the users to generate 
a crowd simulation using our toolset in a random 50% of the experiments (Approach A), and the 

remaining users will be instructed to use the default tools provided by Unity Game Engine (Approach 

B) to develop a similar crowd scene. Time measurements will be noted as described in section 4.6.2. 

The approaches will be marked with letters (A or B) to prevent any bias amongst the subjects.  

Further, they will be provided with two documents:  

1. A document which contains a high-level description/story for both scenes (Scene A & Scene B)  

2. A document which provides the ordered steps the participants will have to complete. This serves 
as a suggestive guide on how to successfully develop the crowd simulation in Scene A and 

retarget it to Scene B.  

 
The documents will be dependent on the approach assigned to the respective participant. Additionally, 

depending on that approach, participants will be given a brief video tutorial on how they can develop 
a crowd simulation for the study. We will then describe the experiment and show them the interface 

that they will be using, which is Unity Game Engine. The tasks in the steps document are a 

decomposition of the larger task of creating a simulated crowd. They will be allowed to ask questions 
about how they can complete these tasks. Specific information on what the result they should work 

towards will also be provided. We will then inform them that the experiment is starting, and they will 
be provided remote access to a machine in the V-SENSE office in TCD, which they will be using to 

complete the tasks. We will then start a timer and begin recording the screen, keystrokes and mouse 

clicks on the machine. The high-level tasks that the participants will need to complete are as follows:  

1. Asset import and preparation 

2. Creation of each crowd member type (random, goal-oriented, static) 
3. Divide the agents into groups according to behaviour and attach associated navigation 

components as necessary 
4. Configure non-static agents with navigation components 

5. Configure animations for each of the agents 

6. Run the simulation and modify parameters as necessary until the result is met  
 

Once the user has completed the experiment, they will press a button which will stop the timer and 
terminate the screen recording session. They will then be asked to complete a subjective UMUX (The 

Usability Metric for User Experience Questionnaire) [36] to evaluate Usability and a UEQ (User 

Experience Questionnaire) [37] to evaluate User Experience of the provided system. The purpose of 
recording the UMUX and UEQ responses is to compare the qualitative performance of our toolset as 

compared to the default Unity tools. Qualitative performance measurements provides us with data 
related to subjective experience of the participants, and this feedback is useful for improving the user 

experience of the participants. 

 

4.6.5 Measurements 

For each participant, we will be measuring and recording the following information during this 

experiment: 

1. Time on task for each of the steps 1-6 identified in section 4.6.4, calculated from the recording 
of the screen. 

2. Keystrokes and mouse clicks throughout the course of the experiment. 

3. The result achieved by each participant, in the form of a Unity Scene file. 

 

A screening expert self-identification questionnaire will be presented to the users to determine the skill 
level of the participant. As discussed in section 4.6.3, only self-identified experts will be allowed to 

participate in the study. Once the user study begins, we will collect the keystrokes and mouse clicks so 
that we can record any periods of inactivity (e.g. if the user goes to the bathroom) so that they can be 
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subtracted from the overall time taken. We will record this data in order to report on the time saving 
gained by using our tools. We will also be recording the data for each of the fields in the UMUX 

questionnaire and the UEQ questionnaire that each participant will be asked to fill in on the completion 
of the experiment. We will save the final scene file containing the developed crowd in order to ensure 

a level of consistency between participants. All this data will be created and saved internally on a TCD 

computer, via a remote access link. Each of the sessions will be anonymised with a randomly assigned 

ID. 

 

5 Conclusion 

This work has served as an investigation into how crowds can be developed to be reusable across 

scenes that are semantically similar. There are numerous avenues for exploration on this front and we 

note here that we only investigated a subset. Our approach to high-level behaviours took an approach 
referred to in the literature as hybrid [38], but other approaches are promising in relation to semantic 

data use, for example microscopic approaches. We view the use of semantic data in crowd scenes to 
generally be a strong candidate for further research and we anticipate that this work will serve as a 

proof-of-concept which may spur further work in this area and for virtual productions in general. 
 

We found that developing crowd simulations in general is currently taken as a specific endeavour and 

that they typically require the use of niche software (e.g. Massive, Menge, Goalem, Legion). Many of 
these are proprietary and cannot be integrated across platforms, which presents an immediate 

challenge in that boiler-plate code often needs to be written to achieve some relatively simple and 
routine tasks. This also creates a problem in that these approaches and technologies can be difficult to 

extend and customize, which creates a barrier for smaller studios with limited resources. To this end, 

we intend that this document and the associated techniques may help guide smaller studios in 
developing crowd simulation pipelines and that it may offer a clear strategy for developing crowds that 

can be repurposed, saving time and money. We plan that smaller studios would be the primary users 
of the technologies in this deliverable, although we hope that the scope could extend as a proof-of-

concept for larger studios. 

 
Our experience of actually creating development crowd scenes was a largely repetitive one, which led 

us to break down the process into individual modules, documented in Section 4. For each logical part 
of the process, we created a module which carries out a specific action. These steps are demonstrated 

in the use cases in Section 4.5. We advocate this modular approach, as it provides flexibility when 
creating crowd members. When some undesired behaviour is encountered, we can simply turn off the 

relevant component. We would encourage future work to treat crowd simulation as a set of 

components, so that some cross-platform modular pipelines may start to emerge. A good example of 
this is the RVO-2 local avoidance library [23], which is available in multiple languages and can be easily 

integrated with many different platforms. 
 

We found that using semantic data to drive crowd behaviour can be an effective time saving tool, 

especially when the semantic data is readily available and in a suitable format. This implies that to some 
degree, this work depends on the automation of the semantic classification of assets, which is an active 

research topic in the SAUCE project, covered by Work Package 4. This leads to the conclusion that a 
crowd simulation using semantic data is possible, as documented in the deliverable, but it depends on 

the quality and detail of the semantic data. AI has seen a recent surge in research and now many 
mature and robust methods exist for tasks such as path-finding and general decision-making. 

Techniques such as reinforcement learning (RL) allow an autonomous agent to make decisions based 

on the perception of its surroundings, which we anticipate will become a more prominent method in 
crowd simulation research once semantically annotated assets replace regular assets. 

 
A significant hurdle that we experienced in this work was devising a sufficient set of metrics to 

adequately evaluate the effectiveness of the tool set that we developed. Generally speaking, the overall 

quality of an arbitrary crowd simulation is something that cannot be measured objectively, since some 
aspects depend on subjective qualities. As noted in section 4.1, many publications don’t attempt to 

define directly how to evaluate the overall quality of a crowd simulation can be measured, but rather 

http://www.massivesoftware.com/
http://gamma.cs.unc.edu/Menge/
http://golaem.com/
https://www.bentley.com/en/products/product-line/building-design-software/legion-simulator
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break it down into components that can be more easily evaluated [12]. Since we are primarily interested 
in the time-saving offered by our toolset through re-targeting, we created an evaluation strategy that 

attempts to isolate this time saving. This will be recorded and statistically analysed in a user evaluation 
study, which will be reported later in the SAUCE project (D8.4 Report on Experimental Production 
Scenario Results and D8.5 Combined Evaluation Report). The planning of the evaluation of this work 

was a non-trivial task and we intend that the methods and metrics devised can be built upon in future 
work to move towards a standard conventional set of test scenarios and metrics for researchers involved 

in crowd simulation. 
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