
 

 
 

D3.4 Accelerated Tools for Creating Smart 
Assets  

 
 

Grant Agreement nr 780470 

Project acronym SAUCE 

Project start date (duration) January 1st 2018 (36 months) 

Document due: December 31st 2019 [M24] 

Actual delivery date  December 20th 2019 

Leader BRNO University of Technology [BUT] 

Reply to Marek  <isolony@fit.vutbr.cz> 

Document status Submission Version 
 

 

Project funded by H2020 from the European Commission



 

SAUCE_D3.4_Accelerated Tools for Creating Smart Assets_20/12/2019_BUT  2 of 27 

 

 

 

 

Document History  
 

Version and date Reason for Change 

1.0 28-10-19 Document created by Marek Solony 

1.1 10-12-19 Version for internal review 

1.2 12-12-19 Final version for submission 

 

  

Project ref. no. 780470 

Project acronym SAUCE 

Project full title Smart Asset re-Use in Creative Environments 

Document name D3.4 Accelerated Tools for Creating Smart Assets 

Security (distribution 
level) 

PU 

Contractual date of 
delivery 

December 31st 2019 [M24] 

Actual date of delivery December 20th 2019 

Deliverable name Accelerated Tools for Creating Smart Assets 

Type Other 

Status & version Submission Version 

Number of pages 27 

WP / Task responsible BUT 

Other contributors USAAR, TCD 

Author(s) Marek Solony, Pavel Smrz 

EC Project Officer Adelina Cornelia DINU  
Adelina-Cornelia.DINU@ec.europa.eu 

Abstract This document contains the implementations and reports of  

the accelerated tools for smart asset transformations for LF 
processing, based on the baseline tools described in the 

deliverable D3.2. 

Keywords Lightfield, Compression, Calibration, Tools, Depth, 
Superresolution, Denoising 

Sent to peer reviewer Yes 

Peer review completed Yes 

Circulated to partners No 

Read by partners No 

Mgt. Board approval No 

Adelina-Cornelia.DINU@ec.europa.eu


 

SAUCE_D3.4_Accelerated Tools for Creating Smart Assets_20/12/2019_BUT  3 of 27 

 

Table of Contents  
 

 

EXECUTIVE SUMMARY 4 

BACKGROUND 4 

INTRODUCTION 4 

Main objectives and goals 4 

Methodology 4 

Convention 5 

Relation to the Self-Assessment Plan 5 

ACCELERATED TOOLS 5 

Camera Array Calibration Tool (BUT) 5 

Image Preprocessing and Geometry Estimation 6 

Feature extraction 6 

Geometry estimation 7 

Refinement 8 

SLAM ++ 8 

Image Rectification Tool (BUT) 11 

Image Warping 11 

Light Field Visualization (BUT) 11 

Video streaming on GPU 12 

Pipeline 13 

Current performance status 13 

Rendering methods 13 

Future work 15 

Light Field Assets Compression Methods 16 

Camera array vs. Lytro camera 18 

Focus shifted compression 19 

Light Field depth estimation code optimization (TCD) 20 

Light Field capturing pipeline 21 

LF capture 21 

LF post-processing 22 

Real-time H.264/MVC encoding 23 

Conclusion 25 

References 26 

 

  



 

SAUCE_D3.4_Accelerated Tools for Creating Smart Assets_20/12/2019_BUT  4 of 27 

 

 

1  EXECUTIVE SUMMARY  

This deliverable is a part of the work package 3 (WP3) - New Technologies for Asset Creation - and 

elaborates on the deliverable D3.2 Analysis of Requirements and Prototypes of the Tools. It 
describes asset creation and transformation tools for Light Field (LF) processing from the 

acceleration perspective. The need for fast processing stems from the large amount of  captured 

data which needs to be pre- and post-processed. Fast tools allow for immediate on-set processing 
and preview which is highly useful for quality assurance and reduction of the total amount of the 

data that needs to be captured to guarantee a successful output.  

The tools and algorithms are accelerated on multiple levels: data sub-sampling, parallel processing 

and hardware acceleration (especially data processing on graphics cards). A part of this deliverable 

is also dedicated to compressing methods of the LF data, developed as a part of the SAUCE project, 

that aim to achieve an optimal storage size or transfer formats for huge LF assets.  

 

2  BACKGROUND 

The LF assets consist of four-dimensional (4D) light field encoding intensity and angular direction of  

a light ray intersecting the image sensor. Capturing the set of 4D rays at specific times extends the 
LF view to the temporal domain forming 5D LFs, where the 5th dimension represents time. The 

details about the LF assets are included in deliverable D3.1. 

The amount of data depends on the capturing device. For example, the camera array constructed 

at USAAR contains a grid of 8x8 cameras, each capable of capturing video at a framerate of 41 

frames per second. Processing and storing such amount of data is a challenging task and without 

accelerated algorithms can take a significant amount of time.  

One of the requirements defined in D3.2 is a calibration of the LF camera array. Proper calibration 
allows image rectification and transforming the data into assets that are directly usable and in the 

format that the other tools can understand. Those assets are therefore generally easier to work 
with, in applications such as depth estimation, refocusing or virtual image generation. Fast on -set 

calibration and rectification allows inspection and previewing of the captured data using effective 

visualization algorithms such as a shift-sum algorithm. 

Fast, accelerated implementation of the tools and prototypes is necessary for further post -

processing of the captured assets in the production pipeline. 

 

3  INTRODUCTION  

This document summarizes the current stage of the development of accelerated prototypes and 
tools developed to address the requirements described in the previous deliverable D3.2. Each tool is 

described from the standpoint of its functionality, relevance for the project and acceleration 
compared to baseline implementation. 

 

3.1  Main objectives and goals  

The main objective of this deliverable is to provide a description of the set of accelerated versions 
of tools introduced in D3.2, including the levels of the acceleration. The tools will be made available 

for the partners to be integrated into their respective asset management frameworks, and will 

eventually become publicly available. 
 

3.2  Methodology  

The prototypes and initial tools have been created and described in the deliverable D3.2. Using the 
newly recorded datasets, the algorithms were refined and accelerated to achieve technology 
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improvement. The performance of some of the algorithms has been measured and was included in 
this deliverable. 

 

3.3  Convention  

The deliverables in WP3 will use the following conventions: 

We will use italics for emphasis, underlined for items that directly relate to the topic of the 

deliverable 
(i.e. asset names and locations in the current deliverable) and monospace for code and pseudo 

code. 

 

3.4  Relation to the Self -Assessment Plan  

The deliverable refers to work package 3 ñNew Technologies for Asset Creationò. Applicable success 

indicators are: 

ƀ Advancement of the state -of-the-art 

ƀ Laboratory testing of the prototypes and the accelerated tools  

For the testing of the prototypes and accelerated tools, multiple datasets with structured and 
unstructured scene content have been recorded using the multi -camera array of USAAR. The tools 

have been developed and tested using the recorded datasets and some results are included in this 
deliverable. Further testing and evaluations are planned for M25-M36. 

 

4  ACCELERATED TOOLS 

4.1  Camera Array Calibration Tool (BUT)  

The multi-camera array technology consists of multiple synchronized physical cameras arranged in 

a grid pattern with constant distances between cameras called baseline. Due to the manual setup 

of the multi -camera system, small misalignments of the cameras, either in position or in rotation 
can occur. In an ideal scenario, the centers of cameras would lie in the exact positions in the grid 

and the optical axis of cameras would be parallel. In this case, the projection planes of all cameras 

would be coplanar and the images produced by the cameras would be rectified. 

 

Figure 1: Multi-camera array for capturing Light Field assets. 

To correct the error of manual camera setup, camera extrinsic parameters (position and rotation of 

the cameras in the world coordinate frame) need to be estimated. The parameters of the cameras 

can be obtained through the process called (extrinsic) camera calibration. This process exploits the 
mutual information about the scene that the cameras observe and applies geometry constraints to 
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estimate the relative poses between cameras. Calibration algorithm relies purely on the visual 
information extracted from the scene, and therefore it is favourable to calibrate the multi -camera 

system using a structured scene - a scene with rich visual information like texture, colors, good 

lighting.  

The calibration tool is a crucial part of the pre -processing pipeline, because the successful 

calibration parameters estimation affects rectification and therefore also further algorithms such as 
shift-sum or depth estimation. The following section describes the parts of the calibration pipeline 

and their acceleration. 

 

Figure 2: Calibration pipeline consists of two main parts - Initialization part that estimates the initial 
geometry of the cameras and Refinement part that further improves the initialization by nonlinear 

optimization. 

BUT calibration algorithm is available for partners on sourceforge1. 

4.1.1  Image Preprocessing and Geometry Estimation  

Due to the grid camera alignment and the nearly parallel optical axis, the camera frustum overlap is 

large between the cameras, and corresponding parts of the scene can be established. The initial 
step of the extrinsic camera calibration algorithm is based on image feature and descriptor 

extraction, and geometry  estimation. This initialization step estimates the poses of the cameras and 

relative transformations between them. This solution can be further refined using  non-linear 
optimization algorithms.  

4.1.1.1 Feature extraction 

Feature detectors detect the feature point s on visual distinctive parts of the scene such as corners, 

edges of textured objects. The estimation of the relative pose between two cameras requires a set 
of reliable 2D point correspondences. The features from each camera are selected using a feature 

detection algorithm such as SIFT, SURF, KAZED, Harris, ORB [Shaharyar2018] and the descriptors 

are computed for each detected feature point.  

The feature and descriptor extraction process can be accelerated by utilizing a graphics processing 
unit (GPU). Generally, the image operations that can be easily parallelized achieve substantially 

better performance on GPUs than on CPUs. In our implementation, we utilize OpenCV GPU_SURF, 
which speeds-up the process by 1000%. All evaluations were performed on a PC with Ryzen 7 

1700X processor and NVidia GTX980 graphic card. 

 Classroom [s] Unfolding [s]  HaToy [s] 

CPU only feat&desc. 

extraction 

209.82 169.39 198.33 

 
1 https://sourceforge.net/projects/slam-frontend-calibration2/ 
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GPU feat&desc. 
extraction 

19.01 12.13 17.73 

Table 1: Comparison of processing times of feature and descriptor extraction task on CPU and GPU. 

Evaluated on SAUCE datasets described in deliverable D3.3 and D3.1. 

Feature matching algorithm finds the corresponding points between the sets of feature points 

extracted from images. The quality of the matches is  important for the estimation of 3D geometry. 
For SURF-like descriptors, the matching pair can be found by analysing the metric e.g., Euclidean 

distance of the descriptors - determining the nearest neighbour. The simplest matching algorithm 

computes the metrics between all possible feature points from images and the pairs with best 
scores are selected. Although the algorithm promises the best possible matches, the processing 

time can be significant with a large number of feature points.  

OpenCV provides brute-force matching algorithm implementation on GPU, which speeds up the 

matching by 100%.  

 Classroom [s] Unfolding [s]  HaToy [s] 

CPU only matching 697.19 132.15 707.42 

GPU matching 197.49 51.06 233.36 

Table 2: Comparison of processing times of feature matching task on CPU and GPU. Evaluated on 

SAUCE datasets described in deliverable D3.3 and D3.1. 

4.1.1.2 Geometry estimation 

Geometry estimation algorithms compute the relative transformation between two cameras based 

on visual information from the camera images. Based on the projective camera model, two cameras 

capturing a scene from different positions are constrained by geometric relations between camera 

centres, 3D points and their 2D images defined by epipolar geometry. 

 

Figure 3: Epipolar geometry defines relations - camera centers, 3D point and its images in 2D 

camera projection plane lie on common epipolar plane. 

According to epipolar geometry, to mathematically describe the relationship between the images of 
a 3D point observed in two cameras, without loss of generality, we can assume that the centre of 

the first camera lies in the origin of world coordinate system and i ts rotation matrix is identity. The 
second camera is positioned according to a rigid transformation [R | t]. We can relate the images of 

the 3D point by epipolar equation:  

ά Ὁ Źά 0  
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Where the E matrix is called an essential matrix. The essential matrix is computed by solving a set 
of linear equations given by the positions of the corresponding 2D images [Hartley2004]. The 

essential matrix is further decomposed to rotation R and translation t, defining the relative 

transformation between cameras. 

Given the relative transformations between neighbour cameras, the global poses of the cameras 

can be recovered. Non-linear optimization methods can be further employed to find the 
configuration of parameters that minimize the sum of squared errors which is  usually defined as a 

nonlinear function that projects the 3D scene points into the camera images and measures the 

distance from the observed 2D feature in the image.  

4.1.2  Refinement  

Refinement problem is defined as a solving of non-linear least squares problem [Brown1976]. This 
problem is usually addressed by repeatedly solving a sequence of linear systems. The efficient 

solving of this problem has been researched in [Lourakis2009], employing Cholesky factorization of 

the system matrix. This solution is efficie nt for solving small to mid -scale problems.  
We utilize a hyper-graph structure to represent the optimization problem. SLAM++ implements 

variables to define sensor poses and points in 2D or 3D space and edge structures to impose 
constraints between the variables. The configuration of the system consists of variables such as 

sensor poses and structure points. Each variable is defined by a number of parameters according to 
the number of its degrees of freedom. The initial estimation of the variables is provid ed by the 

geometry estimator.  

The measurements impose relations between variables, represented by edges connecting the 

variables involved in the measurement. Each edge gives rise to residual and the goal of the 
optimizer is to find the configuration of th e variables that minimize the sum of squared residuals by 

solving the non-linear least squares problem. 

4.1.2.1 SLAM ++ 

The joint pose and structure refinement is implemented on our open -source, non-linear graph 

optimization library, called SLAM++ [Ila2017]. This C++ library is a very efficient implementation of 
several nonlinear least squares solvers, based on fast sparse block matrix manipulation for solving 

the linearized problems. SLAM++ was primarily developed for efficient solving of Simultaneous 

Localization and Mapping (SLAM) problems in robotics, which can be formulated as a non-linear 
least squares problem, where variables represent robot trajectory and/or landmark positions, and 

the edges consist of relative measurements of the landmarks from robot positi ons. SLAM problem is 
mathematically equivalent to Bundle Adjustment (BA). The general implementation allows for the 

definition of variables and edges for solving BA problems as well. SLAM++ produces fast, but 

accurate estimations, which most of the time ou tperforms similar state-of-the-art implementations 

of graph optimization systems [Kaess2007][Kaess2012]. 

Implementation Details  

In order to efficiently cope with very large nonlinear systems, the process of assembling and 

solving the sequence of linear systems must be as fast as possible. The data structure has to allow 
for both, efficiently recomputing the values of the system mat rix every time a new linearization 

point is available as well as efficiently updating the system when new measurements are available. 

One important characteristic of those matrices is their sparse block structure [Ila2013].  
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Figure 4: Block row/column layout of a block matrix. An example of a sparse block matrix and the 

actual values of the cumulative block sum (left, on top and left side). Non -zero dense blocks are 

shown in violet. Yellow shows null rows/columns. Dense block data in segregate storage (right).  

SLAM++ block matrix implementation, block row and block column layouts are described using the 
Compressed Column Storage (CCS) [Davis2006], except that the columns also contain the non -zero 

matrix blocks. The structure is implemented as a sorted list of cumulative sums of block sizes (see 

Fig. 4). The matrix blocks are also stored in a sorted list. Each matrix block contains a row index 
and a pointer to matrix data. The data itself is allocated in forward -allocated segregated storage 

(see Fig. 4), a storage model similar to a pool but only permitting allocation and deallocation of 
elements from the end of the storage, in the same manner stacks do. This yields fast allocation and 

improves cache coherency. 

In order to enable the unusually fast O(1) block random access in arithmetic operations and also to 
facilitate error checking for incorrectly placed blocks, one important restriction on block and column 

layouts must be applied. The whole area of the matrix needs to be represented, which means that 

the layout of null rows or columns needs to be represented as well.  

 

Figure 5: Block matrix arithmetic operations performance on matrices.  
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Times for elementary sparse matrix operations, such as compression, transpose, addition and 
multiplication were measured. Performance of other solvers such as CSparse [Davis2006], g2o 

[Kummerle2011] and our implementation were compared. The results are shown in Figure 5.  

System Constraints  

The hyper-graph structure of the optimization problem allows introducing various constr aints on the 

system. Base constraints consist of the reprojection constraint - the 2D image of 3D structure 

points, given the camera model and parameters should lie at the same pixel positions as measured 

2D features corresponding to given 3D point.  

 

Figure 6: Graph structure of camera parameters (nodes c1-c3) and 3D structure (nodes p 1-p4) 

optimization with reprojection constraints (edges z 1-zk) and grid constraints (edges zg). 

Furthermore, the knowledge about the physical poses of the cameras can be introduced as a 

constraint to the system. Those constraints are incorporated into the system by defining a unary 
edge (edge joining just one variable, in this case, a pose of the camera), which represents an error 

function that rises when the camera pose d rifts away from the expected pose. Optimizer refines the 
parameters of the cameras to satisfy those constraints and at the same time minimizes the 

reprojection error of 3D points.  

 Average Translation Error 
[mm] (sd)  

Average Rotation Error [rad] 
(sd) 

No Grid Constraints 34.8 (13.1)  0.014 (0.006)  

Grid Constraints 4.2 (2.1)  0.012 (0.005)  

Robust Edges 2.3 (1.2)  0.0025 (0.001)  

Table 3: Accuracy evaluation comparison with grid constraints and robust edges. The experiment 

was evaluated on synthetic dataset Classroom with known ground truth data.  

Robust Estimation  

When processing image data, a situation often arises when some of the measurements (2D feature 

and 3D structure points correspondences) introduced into the system are not affected by normally 
distributed noise, but rather have a significantly larger error. This can happen when some 2D 

correspondences between cameras are mismatched. One way to deal with these outliers is to 
introduce additional variables to the optimized system, which decide on the validity of the 

measurements. Alternatively, it is possible to calculate the weights of the measurements directly, 

without any additional variables by using standard robust estimators [Prasad2018]. 

The appealing property of robust estimators (or M -estimators) is their simple integration into the 
ordinary nonlinear least squares (NLS) framework. In fact, NLS is a special case of an M-estimator 
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where the loss function happens to be the L2 norm or squared Mahalanobis norm. Other loss 
functions that are less susceptible to the outliers are possible, we use Huberôs pseudo-L1 function. 

To integrate it in the NLS framework, each observation is assigned a weight.  

In the context of minimization of reprojection error of  the array of cameras producing 1080p 
images, we set the parameters of the Huberôs function to 23.72, which sets the threshold of outlier 

pixel to 16 pixels. 

 

4.2  Image Rectification Tool (BUT)  

Rectification algorithm is used to align the images from cameras in such a way, that the epipolar 

lines (horizontal or vertical, depending on the poses of cameras) of the images are parallel, 

therefore the cameras have a common projection plane. The corresponding 2D points in the images 
are located along the epipolar lines. The rectification also produces new camera projection matrices 

reflecting the image transformation.  

4.2.1  Image Warping  

The rectification algorithm first computes the closest common plane to all cameras by minimizing 
the sum of relative rotations of the came ras to this plane. This step will assure minimal cropping on 

the edges of the image. Subsequently, the homographies from camera projection planes to the 
common projection plane are computed. This information is then fed to the GPU accelerated image 

warping algorithm. 

 

Figure 7: Original image (left) and rectified image (right).  

 

 Classroom [s] Unfolding [s]  HaToy [s] 

CPU rectification 8.221 8.255 8.495 

GPU rectification 5.145 5.321 5.498 

Table 4: Image rectification evaluation.  The time dependency depends only on the image size, 

therefore the speed-up is similar for all datasets. 

 

4.3  Light Field Visualization (BUT)  

There are two main features that light field renderer has to offer in order to fully utilize the light 

field data attr ibutes when compared to the classic 2D image. The scene is captured from multiple 

positions so light field data contain additional spatial information about the scene. This fact should 
allow the renderer to change the viewing position and change the focusi ng plane of the rendered 
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image. The light field player should provide the user with a way to play an interactive light field 
video. 

 
The current use case for this player is an interactive preview of the recorded video in the shooting 

location. The player uses OpenGL for light field rendering so another possible use case is light field 

integration in a 3D scene such as atmospheric effects or views from windows (Figure 8) or some 
inaccessible areas in computer games or graphic demos. 

 

 
 

Figure 8: Light field  data rendered along with a 3D geometry as a view from the window.  

 

4.3.1  Video streaming on GPU  

The main problem when utilizing GPU for light field rendering is the amount of data being 

transferred to the GPU memory and the expensive memory read/write GPU instructions. This leads 
to three constraints that need to be considered when implementing the player.  

1. Minimizing the data transfer between CPU and GPU 
2. Minimizing the amount of read/write operations on the GPU memory  

3. Using a limited amount of GPU memory 

The implemented player solves these problems by keeping no more than two light field video 
frames on the GPU at the same time, by reading the data for one resulting pixel only from relevant 

images from the camera grid and by using a video compression algorithms for data transfer from 
CPU to GPU. 

 



 

SAUCE_D3.4_Accelerated Tools for Creating Smart Assets_20/12/2019_BUT  13 of 27 

 

 
 

Figure 9: Scheme of light field video streaming pipeline in the player describing how lightfield 
images are first compressed using a video compression methods, streamed on the GPU where the 

decompression happens and the final frames are converted into renderable textures.  

4.3.1.1 Pipeline 

Light field images from the array grid are first compressed using h265 codec into a video sequence. 

Changes in compression ratio when choosing various image orders are not significant so images 

from the light field array are compressed in the video line by line starting at the left top corner. The 

h265 video is the input for the light field player so the compression has to be executed in advance.  

The video stream is read using ffmpeg framework and each packet is sent to the GPU where the 

hardware accelerated decompression happens. VDPAU API is used for accessing the GPU 

decompression units. The resulting frame is then being converted from the VDPAU video surface 

format to OpenGL texture using NV_vdpau_interop OpenGL extension provided by Nvidia. The final 

image is then rendered in shaders from the array of textures representing the camera views from 

the original grid. To optimize the process, the de compression and data transfer is happening 

asynchronously to the rendering using two OpenGL contexts. The pipeline is described in Figure 9. 

4.3.1.2 Current performance status 

So far the player can stream light field videos from 8x8 grid (64 images per one video f rame) in 

FullHD (1920x1080) quality in 15.5 fps and HD (1280x720) quality in 27.85 fps (measured on 

GeForce RTX 2070). Additional optimizations are yet to be implemented.  

4.3.2  Rendering methods  

The first simple method that was initially implemented in the play er was simple angle based 

interpolation of the resulting image. The idea is to choose the right image from the camera array 

according to the virtual camera position like in Figure 10 and optionally blend the nearest images. 

This method however is limited t o only simulating the 3D view of light field data with no focusing 

abilities. 
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Figure 10: Simple angle based method that chooses the best image from the camera grid according 

to the angle between a line connecting the center of the lightfield plane with the virtual camera and 

the plane itself.  

Another implemented method was the two planes parameterization approach  [Levoy1996] where a 

ray from virtual camera intersects two planes that are creating an incomplete bounding volume 

around the light field scene. The first intersection determines the closest camera from the camera 

grid and the second intersection chooses which pixel from the given view is being taken into the 

final image. The situation is described in Figure 11. Usually four closest images are taken into 

account with appropriate weights.  

 

 
Figure 11: Two planes parameterization of light field scene. The intersection poi nt of a ray from 

virtual camera on the st plane determines the correct input image from the camera grid and the 

point on uv plane chooses the correct part of the image to be taken into the final result.  

 

The third method is based on shift -sum algorithm tha t moves the images from the camera grid to 

align them into one image using weighted sum described in Figure 12. The offset of each image 
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translation is calculated from the position in the grid and chosen focusing distance. The advantage 

of this algorithm i s that it is the most general one and can be extended by integrating the first 

method for choosing the right image from the grid and setting the weights of summed images 

according to that.  

 
Figure 12: Shift-sum algorithm that sums all the images from the grid translated according to their 

position in the grid and chosen focusing distance. The images are being aligned so the objects in 

the scene that are in the same distance from the camera grid and lie in the focusing distance are 

overlapping. 

4.3.3  Future work  

In terms of performance a speedup of the light field video streaming is needed for being able to 

stream FullHD video in at least standard 25 fps or even being able to play 4K light field videos. 

Some optimizations were already implemented to achieve that but the VDPAU mixer and 

OpenGL/VPDAU interop operations still consume a lot of computing time. We will further focus on 

improving these two parts of the pipeline.  

 

Currently, only one focusing plane is being supported when rendering the light field scene su ch as 

shown in Figure 13. To improve the visual quality depth of field effect and multiple focusing planes 

(aka adaptive per-pixel focusing) will be implemented along with a method to determine the right 

focusing distance for various parts of the scene. One of the options is to use precalculated depth 

data which would however increase the amount of data being transferred on the GPU memory thus 

slowing down the streaming speed. 
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Figure 13: Refocusing of the light field scene by moving the focusing plane on  the z-axis. 

 

4.4  Light Field Assets Compression Methods  

In this activity, BUT evaluated the impact of state -of-the-art image and video compression methods 

on the quality of images rendered from light field data. The methods include recent video 

compression standards, especially AV1 and XVC finalised in 2018. To fully exploit the potential of 

common image compression methods on four-dimensional light field imagery, we have extended 

these methods into three and four dimensions.  

The individual views from a light field are usually never displayed. Therefore, it is not very 

meaningful to compare the original and decompressed light field directly, even though such 

methodology is usual to assess a single view compression performance. For this reason, we adopt 

the compression performance assessment methodology for multi-focus rendering from [Alves2016]. 

This methodology basically lies in assessing the quality of the rendered views for multiple focal 

points. The rendered views are obtained by combining pixels from different 4D light field views for 

various focal planes. The average distortion is computed as the mean of the PSNR for multiple 

rendered focal plane views. This situation is shown in Figure 14. Note that the PSNR is computed 

from the MSE over all three colour components. 
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Figure 14: Data flow diagram of the compression performance assessment methodology. 

The 4D light field comprises a two-dimensional grid of two -dimensional views. The baseline 

between individual views ranges from a few millimeters  (microlenses, Lytro camera) to several 

centimeters (camera array, SAUCE project). It is, therefore, natural to expect a high similarity of 

views adjacent in any of two grid directions. This similarity opens the door to understanding the 4D 

light field dat a as a video sequence navigating between the viewpoints. Another possible point of 

view is to see the 4D light field as the three - or directly four -dimensional body. The above 

approaches can also be reflected in light field compression by using either an image, video, 

volumetric, or four -dimensional coding system. Although other approaches (like 3D video) are also 

possible, we are not aware of generally available coding systems for such cases. 

The digital refocus of the images at the virtual focal plane is achieved using shift-sum algorithm 

[Ng2005]. This algorithm shifts the sub -aperture images (views) according to camera baseline with 

respect to the reference frame and accumulates the corresponding pixel values. The refocused 

image will be an average of the transformed images. We performed a linear interpolation in the last 

two 4D dimensions to convert the sampled light field function into a continuous one.  

At the beginning, we wondered whether it is really necessary to assess the image quality on views 

rendered for multiple focal points rather than the original views (i.e. compare the original and 

decompressed LF directly). A quick experiment revealed that a big difference exists between the 

former and the latter (see Figure 15). This difference is  about 10 decibels in the PSNR, depending 

on the bitrate and compression method. This can be explained by the fact that any pixel in the 

rendered view is a sum of pixels from the 4D LF so that this sum all together suppresses 

compression artifacts. In othe r words, we can afford to compress the 4D light fields much more 

than independent images, while maintaining the same visual quality of a screened picture.  

 

Figure 15: The difference in the quality assessment using the 4D light field directly vs. using ima ges 

rendered at virtual focal planes. Shown on the Black Fence from Lytro camera. 
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4.4.1  Camera array vs. Lytro camera  

Most current LF compression approaches handle either 2D data or their sequence (video 

compression). Since 4D LF are sequences of 2D images (views), the 2D compression methods may 

be used to code the views independently. However, such methods fail to exploit pixel correlations in 

all four dimensions. Similar reasoning can be used for 3D methods. In our next step, we were 

interested in examining the effects of LF compression in three and four dimensions. To evaluate the 

compression performance fairly, identical compression method must be used for the 2D, 3D, and 

4D case. Thus, we have created a custom implementation of the JPEG compression method with 

the ability to process either the 2D, 3D, or 4D data [Barina2019]. Additionally, we are aware of the 

existence of the JPEG 2000 standard, with the ability to compress the 2D and 3D data in the same 

manner. Since the similarity of adjacent pixels in the third and four dimensions strongly depends on 

the camera baseline, different results can be expected depending on the baseline distance. The 

result of this experiment is shown in Figure 16. The horizontal axis shows the bitrate (bits per 

pixel), whereas the vertical axis shows the mean of the PSNR for multiple rendered focal plane 

views. On light fields with a small baseline (Lytro camera), both 3D compression methods clearly 

outperform their 2D counterparts over a whole range of bitrates. Similarly, the 4D  JPEG method 

clearly outperforms its 3D counterpart. This is not so surprising because pixels at the same spatial 

position in adjacent views are strongly correlated. However, the situation changes with increasing 

baseline. With increasing baseline (Chessboard from SAUCE project), adjacent views are less and 

less similar, which results in higher amplitudes of the underlying transform coefficients. 

Consequently, the tide is turning in favor of the less -dimensional compression methods. Considering 

the JPEG method, the Lego Bulldozer is a special case because it contains large areas of blackness 

(black pixels). It turns out that it is more efficient to compress these solid areas at once using a 

single 4D block than using multiple 3D blocks. Similarly, it is more efficient to use a single 3D block 

than multiple 2D blocks. 
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Figure 16: Comparison of image compression methods against their extensions into three and four 

dimensions. 

We were also interested in whether it be better to compress the 4D light fields as a sequence of 2D 

frames, or as multi -dimensional body. We, therefore, measured the performance of all the above -

mentioned video compression standards. The results can be seen in Figure 17. Interestingly, the 

XVC codec has shown better compression performance than HEVC and AV1. 

 

Figure 17: Performance of video compression methods. 

We have further compared the performance of all above -investigated methods. The overall 

comparison is shown in Figure 18. Video compression methods exhibit better compression 

performance than all image compression methods, even better than their 3D and 4D extensions. 

 

 

Figure 18: Overall performance of the best compression methods. 

4.4.2  Focus shifted compression  

We were also interested whether shifting individual 2D views (focusing on a particular point) of the 

4D light field can lead to a better compression performance than direct compression of unfocused 

4D light field. On all light fields, this preprocessing really leads to a significantly better performance. 

On LFs with a small baseline (Lytro camera), our 4D JPEG method overcomes all other methods, 

including H.265 and AV1. However, on light fields used in the SAUCE project, the H.265 is still 

unsurpassed. A quick experiment on the HaToy light field is shown below (our method is labeled 

the 4D, whereas the H.265 is labeled by the x265).  
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Figure 19: Focus shifted compression on HaToy light field from the SAUCE project. 

4.5  Light Field depth estimation code optimization (TCD)  

A light field depth estimation tool has been previously shared wit h SAUCE partners, which has since 

been optimized, both in terms of algorithm and implementation.  

The main steps of the original depth estimation method consisted in computing sparse pairwise 

matching between views of a row or column of the light field using the Coarse -to-Fine PatchMatch 

(CPM) method, followed by an edge-aware filtering step using the permeability filter (PF), ending 

with a variational refinement step using successive over-relaxation (SOR). The output consisted in 

optical flow images connecting all pairs of views from the input row or column. In addition, all 

intermediate results were written on disk as output. An additional step using MATLAB was 

necessary to convert the optical flow to disparity.  

In the new version of the code, the major algorithmic change consists in applying the steps 

described above on the input views downsampled by a factor 2. The output disparity maps are then 

upsampled to the original using simple bicubic interpolation, followed by the PF in order to sharpen 

edges. The final disparity maps are obtained after a variational refinement step. This avoids 

computing the CPM on the full resolution images, which is costly computationally. In addition, the 

code was optimized to avoid writing every intermediate result on disk if desired, and directly 

outputs disparity maps in .pfm format which bypasses the MATLAB post processing step, which is 

not only faster but also more convenient.  

Objective tests conducted on the HCI benchmark, which contains 9x9x512x512 synthetic light fields 

with ground truth disparity maps, show that faster but also more accurate disparity map can be 

obtained thanks to this optimization, as illustrated in Figure 20. For the 8x8x1920x1200 light field 

captured during the Unfolding shoot, the computation time is now reduced to ~6s per view, while 

~40s were required before optimization.  
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Figure 20: Disparity maps for the óPlatonicô light field from the HCI benchmark. Computation time 

per view is ~1.2s before and ~0.4s after optimization, while precision is also improved.  

 

4.6  Light Field capturing pipeline  

This section discusses the efforts to accelerate the capturing and processing pipeline used in the 

camera array used by USAAR to capture the light field assets used and produced in the SAUCE 
project, namely Unfolding, LF Elements and HaToy.  

 

4.6.1  LF capture  

During the first LF test shoot on the premises of the Film akademie(FA) it became apparent that one 

of the most time consuming steps during capturing, besides the initial setup and mechanical 

camera alignment, was the transfer of the captured images from the buffers in the camera nodes 

to persistent storage. 

The first level of caching in the camera nodes is necessary because the cameras produce about 

132MB of raw data per second at the maximum resolution, colour depth and frame rate. This 

amount of data canôt be transferred in real time to the persistent storage in real-time through the 

1Gbit connection of the camera nodes and they do not process enough processing power for real-

time lossless compression of the data. Unfortunately, the theoretical limit of 1Gbit per camera node 
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is never reached when all nodes transfer data simultaneously due to bottlenecks in other parts of 

the network and due to the initial storage architecture.  

At the beginning of the project the persistent storage consisted of five 12TB drives in a RAID5 

configuration in the central control server  of the array with an effective capacity of 48TB. With 64 

clients streaming data from SSDs, the five disks just could not keep up. In the beginning of a 

transfer they up to 300MB per second, but they slowed down to about 30MB per second as soon as 

the hard disk buffer in the RAM of the control server was full. This meant that while the scene was 

only about 7 minutes long, it took several hours to transfer everything. During that time no new 

recording was possible and it slowed down the whole capturing process significantly. 

To accelerate the transfer process, it was decided to move the persistent storage from the control 

server to a separate storage cluster containing 4 storage nodes with eight 12TB HDDs in each 

node. Even though a node level mirroring of th e raw data was applied to protect against potential 

hardware failures, it significantly increased the transfers from the buffers to the storage. During the 

Unfolding shoot the system achieved constant transfer speeds of nearly 2GB per second, equivalent 

to the maximum throughput of the 20Gbit connection between the storage cluster and the rest of 

the system as shown in Figure 21. Even though it is not enough to do the transfers in real -time, it 

reduced the transfer times to about 3 times the capturing time which allowed for way more scenes 

being shot during a single day. In total the new storage cluster the use of the storage array 

increased the average transfer time after capturing about 60 -fold. 

Additionally, the storage cluster also enabled us to distribute the post -processing operations over 

the available hardware more efficiently as shown in the following section.  

 
Figure 21: Storage elements present in the USAAR camera array 

4.6.2  LF post -processing  

After every shoot the storage of the camera array contains a large number of grayscale frames 

representing the raw sensor data of every camera. Even for very short scenes with a length of two 

seconds, over 5000 frames need to be processed. The processing pipeline is usually comprised of 

the following steps: First, the raw data is debayered or demosaiced to get a full colour image from 

the raw sensor data. Second, the colors in the images are aligned and corrected so that colours in 

the captured scene produce the same values in every camera. Third, the images are rectified to 



 

SAUCE_D3.4_Accelerated Tools for Creating Smart Assets_20/12/2019_BUT  23 of 27 

 

correct for the errors in mechanical alignment of the cameras to make the images more compatible 

with existing light field algorithms.  

Before the post-processing can start, the optimal parameters for every step have to be determined. 

This process can be quite time intensive, but since this only has to be done once per scene it is not 

prohibitive for the overall performance, but still there have been acceleration efforts described in 

earlier sections. The set of colour images required as input for these parameter calculations are 

debayered on the control server in a non-distributed way.  

The final processing of the frames of a scene was always intended to be distributed over the 

available camera nodes in the camera array. When the persistent storage was still located in the 

control server, this was very inefficient because just like in the section before, the hard drives were 

overwhelmed by the 64 clients requesting data to process and writin g back the results at the same 

time. This resulted in an awful overall performance and the camera node mostly being idle and 

waiting for data to transfer. In total only between 10 and 15 frames were being processed per 

second which meant processing a very short scene of 5000 frames already took at least 5.5 

minutes, and often longer, to finish.  

With the storage cluster this improved significantly. The camera nodes were granted read access 

for the raw data and write access to the storage space for the result s. They now determine 

independently which camera they are responsible for and start local threads which download a file, 

run it through the required steps, and upload the result back to the cluster as shown in figure 22. 

The number of threads highly depends on the complexity of every processing step and the number 

of available processor cores in the camera nodes. At the moment it is most efficient to process two 

frames at every camera node in parallel. With this architecture every camera node is capable of 

processing between 1.5 and 2 frames per second which results in an overall performance of 96 to 

120 frames per second. Overall, we achieved a speedup of at least 6.4, which is especially 

noticeable for longer scenes. 

 

 
Figure 22: Data paths during post-processing 

4.6.3  Real - time H.264/MVC encoding  

For application which do not require the highest image quality, but can cope with compressed 

footage, we developed a real-time streaming approach which allows to stream the footage from all 

cameras in H.264/MVC encoded streams. Even though those streams have been standardized 

nearly 10 years ago, no optimized implementations exist for more than two views per stream, 

neither for encoders nor for decoders. In order to use the standard more optimally and to facilita te 

real-time streaming of the camera footage, we created a real -time H.264/MVC encoder and 
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decoder chain that exploits the similarities of H.264/MVC to H.264/AVC for which optimized 

algorithms exist in hardware and software.  

After a version which simply multiplexed multiple pre -coded AVC streams into a standard-compliant 

MVC stream and ran in real-time, we created two prototypes for the addition of inter -view 

prediction into the encoder. This was important because inter -view prediction is the main 

enhancement of MVC over AVC and we lose a lot of encoding efficiency without it. The idea of the 

first prototype is shown in Figure 23. It starts with the extraction of the I -frames from every input 

stream, decoding them and combining them into an additional AVC stream with normal inter -frame 

prediction which reduces the overall size of these frames significantly. In a second step, the 

transcoder replaces the I-frames from the original streams with their respective recoded versions 

and multiplexes the input streams into a single MVC stream. The main drawback of this approach is 

the fact that all frames which are not replaced by the transcoder now reference a slightly different 

image than when their predictions were calculated during precoding and therefore the overal l 

quality of the final stream slightly decreases. In total we lose about 1 dB on all frames compared to 

the reference MVC encoder. 

The second prototype mainly follows the same structure as the first. The main difference is that it 

pauses the precoders after the first frame, sends the results to the transcoder where the inter -view 

prediction is calculated. These new reference frames are transferred back to the precoders and 

spliced into their respective decoded picture buffers (DPB). Then the precoders resume work as 

normal and the transcoder just multiplexes the pre -coded streams without further modifications. 

This leads to a higher overall quality because the frames following the I -frames now use their 

original reference. 

The two prototypes have only been evaluated to be real-time capable based on the amount of 

added complexity to the different stages compared to the simple multiplexer. A productive version 

of these prototypes requires two or three slightly modified versions of an existing optimized AVC 

encoder, respectively. Since their implementation requires a significant amount of resources and 

there was no need for a production version, it has not been undertaken until now.  

 

 
Figure 23: Structure of a real -time MVC encoder with fake inter-view prediction 






